Photochemical Nickel-Catalyzed C-H Arylation: Synthetic Scope and Mechanistic Investigations
- PMID: 27653500
- PMCID: PMC5054938
- DOI: 10.1021/jacs.6b04789
Photochemical Nickel-Catalyzed C-H Arylation: Synthetic Scope and Mechanistic Investigations
Abstract
An iridium photocatalyst and visible light facilitate a room temperature, nickel-catalyzed coupling of (hetero)aryl bromides with activated α-heterosubstituted or benzylic C(sp3)-H bonds. Mechanistic investigations on this unprecedented transformation have uncovered the possibility of an unexpected mechanism hypothesized to involve a Ni-Br homolysis event from an excited-state nickel complex. The resultant bromine radical is thought to abstract weak C(sp3)-H bonds to generate reactive alkyl radicals that can be engaged in Ni-catalyzed arylation. Evidence suggests that the iridium photocatalyst facilitates nickel excitation and bromine radical generation via triplet-triplet energy transfer.
Conflict of interest statement
The authors declare no competing financial interest.
Figures



Similar articles
-
Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp3)-H Cross-Coupling.Acc Chem Res. 2021 Feb 16;54(4):988-1000. doi: 10.1021/acs.accounts.0c00694. Epub 2021 Jan 29. Acc Chem Res. 2021. PMID: 33511841 Free PMC article.
-
The Dual Role of Benzophenone in Visible-Light/Nickel Photoredox-Catalyzed C-H Arylations: Hydrogen-Atom Transfer and Energy Transfer.Angew Chem Int Ed Engl. 2019 Mar 11;58(11):3566-3570. doi: 10.1002/anie.201901327. Epub 2019 Feb 18. Angew Chem Int Ed Engl. 2019. PMID: 30776185
-
Mechanistic insights into photochemical nickel-catalyzed cross-couplings enabled by energy transfer.Nat Commun. 2022 May 18;13(1):2737. doi: 10.1038/s41467-022-30278-8. Nat Commun. 2022. PMID: 35585041 Free PMC article.
-
Photoredox-Mediated Routes to Radicals: The Value of Catalytic Radical Generation in Synthetic Methods Development.ACS Catal. 2017 Apr 7;7(4):2563-2575. doi: 10.1021/acscatal.7b00094. Epub 2017 Mar 14. ACS Catal. 2017. PMID: 28413692 Free PMC article. Review.
-
Functionalization of C-H Bonds by Photoredox Catalysis.Chem Rec. 2017 Aug;17(8):754-774. doi: 10.1002/tcr.201600125. Epub 2017 Jan 11. Chem Rec. 2017. PMID: 28074599 Review.
Cited by
-
Developments in Photoredox/Nickel Dual-Catalyzed 1,2-Difunctionalizations.Chem. 2020 Jun 11;6(6):1327-1339. doi: 10.1016/j.chempr.2020.05.013. Chem. 2020. PMID: 32542207 Free PMC article.
-
Photoredox-Nickel Dual-Catalyzed C-Alkylation of Secondary Nitroalkanes: Access to Sterically Hindered α-Tertiary Amines.J Am Chem Soc. 2023 Mar 1;145(8):4707-4715. doi: 10.1021/jacs.2c13174. Epub 2023 Feb 16. J Am Chem Soc. 2023. PMID: 36795911 Free PMC article.
-
Energy Transfer to Ni-Amine Complexes in Dual Catalytic, Light-Driven C-N Cross-Coupling Reactions.J Am Chem Soc. 2019 Dec 11;141(49):19479-19486. doi: 10.1021/jacs.9b11049. Epub 2019 Dec 3. J Am Chem Soc. 2019. PMID: 31714761 Free PMC article.
-
Applications and Prospects for Triplet-Triplet Annihilation Photon Upconversion.Chimia (Aarau). 2018 Aug 22;72(7):501-507. doi: 10.2533/chimia.2018.501. Chimia (Aarau). 2018. PMID: 30158013 Free PMC article.
-
Photoredox Radical/Polar Crossover Enables Construction of Saturated Nitrogen Heterocycles.Org Lett. 2019 Apr 5;21(7):2317-2321. doi: 10.1021/acs.orglett.9b00602. Epub 2019 Mar 12. Org Lett. 2019. PMID: 30860849 Free PMC article.
References
-
- Narayanam J. M. R.; Stephenson C. R. J. Chem. Soc. Rev. 2011, 40, 102.10.1039/B913880N. - DOI - PubMed
- Prier C. K.; Rankic D. A.; MacMillan D. W. C. Chem. Rev. 2013, 113, 5322.10.1021/cr300503r. - DOI - PMC - PubMed
- Yoon T. P.; Ischay M. A.; Du J. Nat. Chem. 2010, 2, 527.10.1038/nchem.687. - DOI - PubMed
- Reckenthaler M.; Griesbeck A. G. Adv. Synth. Catal. 2013, 355, 2727.10.1002/adsc.201300751. - DOI
-
- Ritleng V.; Sirlin C.; Pfeffer M. Chem. Rev. 2002, 102, 1731.10.1021/cr0104330. - DOI - PubMed
- Cho S. H.; Kim J. Y.; Kwak J.; Chang S. Chem. Soc. Rev. 2011, 40, 5068.10.1039/c1cs15082k. - DOI - PubMed
- Chen X.; Engle K. E.; Wang D.–H.; Yu J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.10.1002/anie.200806273. - DOI - PMC - PubMed
- Daugulis O.; Do J.-Q.; Shabashov D. Acc. Chem. Res. 2009, 42, 1074.10.1021/ar9000058. - DOI - PMC - PubMed
- Mkhalid I. A. I.; Barnard J. H.; Marder T. B.; Murphy J. M.; Hartwig J. F. Chem. Rev. 2010, 110, 890.10.1021/cr900206p. - DOI - PubMed
-
- Muto K.; Yamaguchi J.; Itami K. J. Am. Chem. Soc. 2012, 134, 169.10.1021/ja210249h. - DOI - PubMed
- Amaike K.; Muto K.; Yamaguchi J.; Itami K. J. Am. Chem. Soc. 2012, 134, 13573.10.1021/ja306062c. - DOI - PubMed
- Shiota H.; Ano Y.; Aihara Y.; Fukumoto Y.; Chatani N. J. Am. Chem. Soc. 2011, 133, 14952.10.1021/ja206850s. - DOI - PubMed
- Aihara Y.; Chatani N. J. Am. Chem. Soc. 2013, 135, 5308.10.1021/ja401344e. - DOI - PubMed
- Aihara Y.; Chatani N. J. Am. Chem. Soc. 2014, 136, 898.10.1021/ja411715v. - DOI - PubMed
- Liu D.; Liu C.; Li H.; Lei A. Angew. Chem., Int. Ed. 2013, 52, 4453.10.1002/anie.201300459. - DOI - PubMed
- Liu D.; Li Y.; Qi X.; Liu C.; Lan Y.; Lei A. Org. Lett. 2015, 17, 998.10.1021/acs.orglett.5b00104. - DOI - PubMed
-
- Tellis J. C.; Primer D. N.; Molander G. A. Science 2014, 345, 433.10.1126/science.1253647. - DOI - PMC - PubMed
- Primer D. N.; Karakaya I.; Tellis J. C.; Molander G. A. J. Am. Chem. Soc. 2015, 137, 2195.10.1021/ja512946e. - DOI - PMC - PubMed
- Karakaya I.; Primer D. N.; Molander G. A. Org. Lett. 2015, 17, 3294.10.1021/acs.orglett.5b01463. - DOI - PMC - PubMed
- Ryu D.; Primer D. N.; Tellis J. C.; Molander G. A. Chem. - Eur. J. 2016, 22, 120.10.1002/chem.201504079. - DOI - PubMed
- Amani J.; Sodagar E.; Molander G. A. Org. Lett. 2016, 18, 732.10.1021/acs.orglett.5b03705. - DOI - PMC - PubMed
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources