Models of neuromodulation for computational psychiatry
- PMID: 27653804
- DOI: 10.1002/wcs.1420
Models of neuromodulation for computational psychiatry
Abstract
Psychiatry faces fundamental challenges: based on a syndrome-based nosology, it presently lacks clinical tests to infer on disease processes that cause symptoms of individual patients and must resort to trial-and-error treatment strategies. These challenges have fueled the recent emergence of a novel field-computational psychiatry-that strives for mathematical models of disease processes at physiological and computational (information processing) levels. This review is motivated by one particular goal of computational psychiatry: the development of 'computational assays' that can be applied to behavioral or neuroimaging data from individual patients and support differential diagnosis and guiding patient-specific treatment. Because the majority of available pharmacotherapeutic approaches in psychiatry target neuromodulatory transmitters, models that infer (patho)physiological and (patho)computational actions of different neuromodulatory transmitters are of central interest for computational psychiatry. This article reviews the (many) outstanding questions on the computational roles of neuromodulators (dopamine, acetylcholine, serotonin, and noradrenaline), outlines available evidence, and discusses promises and pitfalls in translating these findings to clinical applications. WIREs Cogn Sci 2017, 8:e1420. doi: 10.1002/wcs.1420 For further resources related to this article, please visit the WIREs website.
© 2016 Wiley Periodicals, Inc.
Similar articles
-
Generative models for clinical applications in computational psychiatry.Wiley Interdiscip Rev Cogn Sci. 2018 May;9(3):e1460. doi: 10.1002/wcs.1460. Epub 2018 Jan 25. Wiley Interdiscip Rev Cogn Sci. 2018. PMID: 29369526 Review.
-
Computational approaches to psychiatry.Curr Opin Neurobiol. 2014 Apr;25:85-92. doi: 10.1016/j.conb.2013.12.007. Epub 2013 Dec 29. Curr Opin Neurobiol. 2014. PMID: 24709605 Review.
-
Cholinergic and monoaminergic substrates of startle habituation.Life Sci. 1984 May 28;34(22):2101-5. doi: 10.1016/0024-3205(84)90308-4. Life Sci. 1984. PMID: 6727553
-
Computational Psychosomatics and Computational Psychiatry: Toward a Joint Framework for Differential Diagnosis.Biol Psychiatry. 2017 Sep 15;82(6):421-430. doi: 10.1016/j.biopsych.2017.05.012. Epub 2017 May 25. Biol Psychiatry. 2017. PMID: 28619481 Review.
-
Modern concepts in electrophysiology for psychiatry.Psychopharmacol Commun. 1975;1(6):579-85. Psychopharmacol Commun. 1975. PMID: 817377
Cited by
-
Autism Spectrum Disorder and Clinical High Risk for Psychosis: A Systematic Review and Meta-analysis.J Autism Dev Disord. 2022 Apr;52(4):1568-1586. doi: 10.1007/s10803-021-05046-0. Epub 2021 May 15. J Autism Dev Disord. 2022. PMID: 33993403 Free PMC article.
-
Neuromodulation Strategies in Lifelong Bipolar Disorder: A Narrative Review.Behav Sci (Basel). 2024 Dec 8;14(12):1176. doi: 10.3390/bs14121176. Behav Sci (Basel). 2024. PMID: 39767317 Free PMC article. Review.
-
Dopaminergic basis for signaling belief updates, but not surprise, and the link to paranoia.Proc Natl Acad Sci U S A. 2018 Oct 23;115(43):E10167-E10176. doi: 10.1073/pnas.1809298115. Epub 2018 Oct 8. Proc Natl Acad Sci U S A. 2018. PMID: 30297411 Free PMC article.
-
Recent Trends in the Quantification of Biogenic Amines in Biofluids as Biomarkers of Various Disorders: A Review.J Clin Med. 2019 May 9;8(5):640. doi: 10.3390/jcm8050640. J Clin Med. 2019. PMID: 31075927 Free PMC article. Review.
-
Computational Neuroscience's Influence on Autism Neuro-Transmission Research: Mapping Serotonin, Dopamine, GABA, and Glutamate.Biomedicines. 2025 Jun 10;13(6):1420. doi: 10.3390/biomedicines13061420. Biomedicines. 2025. PMID: 40564138 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical