Phosphorylated sites within the functional domains of the approximately 100-kDa steroid-binding subunit of glucocorticoid receptors
- PMID: 2765497
- DOI: 10.1021/bi00436a055
Phosphorylated sites within the functional domains of the approximately 100-kDa steroid-binding subunit of glucocorticoid receptors
Abstract
The steroid-binding subunit of the glucocorticoid receptor is known to be a approximately 100-kDa phosphoprotein composed of an immunogenic, DNA-binding, and steroid-binding domain. When isolated from WEHI-7 cells, this protein contains between two and three phosphoryl groups per steroid-binding site (Mendel WEHI-7 cells, this protein contains between two and three phosphoryl groups per steroid-binding site (Mendel et al., 1987). To identify the domains that contain these phosphorylated sites, we have analyzed the phosphate content of selected proteolytic fragments of the approximately 100-kDa steroid-binding protein from nonactivated and activated receptors. The approximately 100-kDa steroid-binding protein from WEHI-7 cells grown in the presence of [32P]orthophosphate was covalently labeled with [3H]dexamethasone 21-mesylate, purified with the BuGR2 monoclonal antibody, digested with chymotrypsin or trypsin, and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Chymotrypsin digestion of this protein yields a approximately 45-kDa fragment containing both the steroid-binding and DNA-binding domains, which contained both 32P and 3H. Trypsin digestion of the protein yields a approximately 29-kDa fragment encompassing the steroid-binding domain but not the DNA-binding domain of the approximately 100-kDa protein, which also contained both 32P and 3H. The 32P/3H ratio of each fragment provides a measure of phosphate content per steroid-binding site and indicated that each fragment has approximately 30% of the phosphate content of the intact protein. This is sufficient to account for one of the three receptor phosphoryl groups.(ABSTRACT TRUNCATED AT 250 WORDS)
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Other Literature Sources
Research Materials