Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Sep 20;3(3):16.
doi: 10.3390/children3030016.

Rewiring of Developing Spinal Nociceptive Circuits by Neonatal Injury and Its Implications for Pediatric Chronic Pain

Affiliations
Review

Rewiring of Developing Spinal Nociceptive Circuits by Neonatal Injury and Its Implications for Pediatric Chronic Pain

Mark L Baccei. Children (Basel). .

Abstract

Significant evidence now suggests that neonatal tissue damage can evoke long-lasting changes in pain sensitivity, but the underlying cellular and molecular mechanisms remain unclear. This review highlights recent advances in our understanding of how injuries during a critical period of early life modulate the functional organization of synaptic networks in the superficial dorsal horn (SDH) of the spinal cord in a manner that favors the excessive amplification of ascending nociceptive signaling to the brain, which likely contributes to the generation and/or maintenance of pediatric chronic pain. These persistent alterations in synaptic function within the SDH may also contribute to the well-documented "priming" of developing pain pathways by neonatal tissue injury.

Keywords: GABA; dorsal horn; glutamate; glycine; incision; neonate; pain; rodent; spinal cord; synapse.

PubMed Disclaimer

Conflict of interest statement

The author declares no conflict of interest.

Figures

Figure 1
Figure 1
Early tissue damage widens the timing window for evoking spike timing-dependent long-term potentiation (t-LTP) at sensory synapses onto adult spinal projection neurons. Left column (Naïve): In naïve adult mice, highly correlated presynaptic (black) and postsynaptic (red) action potential firing (i.e., occurring within a window of 10–20 ms; green box) led to a strengthening of primary afferent synapses onto ascending lamina I projection neurons. This reflected an increase in the probability of glutamate release from the presynaptic terminals of the sensory neurons, as illustrated here by a larger size of the presynaptic terminals (black triangles in bottom panels). Right column (Neonatal Incision): In adult mice subjected to neonatal surgical injury, the timing window for generating t-LTP (green box) at afferent synapses onto spinal projection neurons significantly widened, such that poorly correlated presynaptic and postsynaptic firing (at pairing intervals ≥50 ms; middle panel) was still able to generate t-LTP. This enhanced propensity to generate t-LTP likely results, at least in part, from an elevated expression of Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs) (blue rectangles) in mature projection neurons following early tissue damage, since blocking these glutamate receptors prevented t-LTP in neonatally-injured mice but not naïve littermate controls [69]. NMDA: N-methyl-D-aspartate.

Similar articles

Cited by

References

    1. Todd A.J. Neuronal circuitry for pain processing in the dorsal horn. Nat. Rev. Neurosci. 2010;11:823–836. doi: 10.1038/nrn2947. - DOI - PMC - PubMed
    1. Sherman S.E., Loomis C.W. Morphine insensitive allodynia is produced by intrathecal strychnine in the lightly anesthetized rat. Pain. 1994;56:17–29. doi: 10.1016/0304-3959(94)90146-5. - DOI - PubMed
    1. Sivilotti L., Woolf C.J. The contribution of GABAA and glycine receptors to central sensitization: Disinhibition and touch-evoked allodynia in the spinal cord. J. Neurophysiol. 1994;72:169–179. - PubMed
    1. Yaksh T.L. Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: Effects of modulatory receptor systems and excitatory amino acid antagonists. Pain. 1989;37:111–123. doi: 10.1016/0304-3959(89)90160-7. - DOI - PubMed
    1. Torsney C., MacDermott A.B. Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J. Neurosci. 2006;26:1833–1843. doi: 10.1523/JNEUROSCI.4584-05.2006. - DOI - PMC - PubMed

LinkOut - more resources