RNA-binding proteins implicated in neurodegenerative diseases
- PMID: 27659605
- PMCID: PMC5179305
- DOI: 10.1002/wrna.1397
RNA-binding proteins implicated in neurodegenerative diseases
Abstract
Gene expression is regulated at many levels, including after generation of the primary RNA transcript from DNA but before translation into protein. Such post-translational gene regulation occurs via the action of a multitude of RNA binding proteins and include varied actions from splicing to regulation of association with the translational machinery. Primary evidence that such processes might contribute to disease mechanisms in neurodegenerative disorders comes from the observation of mutations in RNA binding proteins, particularly in diseases in the amyotrophic lateral sclerosis-frontotemporal dementia spectrum and in some forms of ataxia and tremor. The bulk of evidence from recent surveys of the types of RNA species that are affected in these disorders suggests a global deregulation of control rather than a very small number of RNA species, although why some groups of neurons are sensitive to these changes is not well understood. Overall, these data suggest that neurodegeneration can be initiated by mutations in RNA binding proteins and, as a corollary, that neurons are particularly sensitive to loss of control of gene expression at the post-transcriptional level. Such observations have implications not only for understanding the nature of neurodegenerative disorders but also how we might intervene therapeutically in these diseases. WIREs RNA 2017, 8:e1397. doi: 10.1002/wrna.1397 For further resources related to this article, please visit the WIREs website.
Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Conflict of interest statement
No conflicts of interest.
Figures
References
-
- Hardy J, Orr H. The genetics of neurodegenerative diseases. J. Neurochem. 2006;97(6):1690–1699. - PubMed
-
- Lill CM, Bertram L. Towards unveiling the genetics of neurodegenerative diseases. Semin. Neurol. 2011;31(5):531–541. - PubMed
-
- Neelamraju Y, Hashemikhabir S, Janga SC. The human RBPome: from genes and proteins to human disease. J. Proteomics. 2015;127(Pt A):61–70. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
