Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jan/Feb;63(1):48-52.
doi: 10.1097/MAT.0000000000000441.

CRRT Connected to ECMO: Managing High Pressures

Affiliations

CRRT Connected to ECMO: Managing High Pressures

Christian de Tymowski et al. ASAIO J. 2017 Jan/Feb.

Abstract

Metabolic disorders and fluid overload are indications of continuous renal replacement therapy (CRRT) including continuous venovenous hemofiltration in patients on extracorporeal membrane oxygenation (ECMO). Direct connection of CRRT machine to the ECMO circuit provides many advantages. Nevertheless, because pressures in CRRT lines relate to ECMO blood flow, high ECMO blood flow may be associated with high pressures in CRRT lines. Thus, management of CRRT pressure lines becomes challenging. We evaluated a protocol for managing high CRRT pressures. Connections were performed according to a standardized protocol to maintain CRRT lines in the correct pressure ranges without modifying ECMO settings or inhibiting pressure alarms. To achieve this goal, the way of connecting of CRRT lines was adapted following a standardized protocol. Connection was first attempted between pump and oxygenator in the 12 patients. In five cases, high pressures in CRRT lines were successfully managed by changing the connection segment. Continuous renal replacement therapy parameters were within target levels and reduction of serum creatinine was 37%. In conclusion, management of high pressures in CRRT lines induced by ECMO could be achieved without modifying ECMO blood flow or inhibiting CRRT alarms. Iterative stops were avoided allowing efficient procedures.

PubMed Disclaimer

LinkOut - more resources