Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Feb;45(2):e169-e183.
doi: 10.1097/CCM.0000000000002056.

Secreted Frizzled-Related Protein 2 and Inflammation-Induced Skeletal Muscle Atrophy

Affiliations

Secreted Frizzled-Related Protein 2 and Inflammation-Induced Skeletal Muscle Atrophy

Xiaoxi Zhu et al. Crit Care Med. 2017 Feb.

Abstract

Objective: In sepsis, the disease course of critically ill patients is often complicated by muscle failure leading to ICU-acquired weakness. The myokine transforming growth factor-β1 increases during inflammation and mediates muscle atrophy in vivo. We observed that the transforming growth factor-β1 inhibitor, secreted frizzled-related protein 2, was down-regulated in skeletal muscle of ICU-acquired weakness patients. We hypothesized that secreted frizzled-related protein 2 reduction enhances transforming growth factor-β1-mediated effects and investigated the interrelationship between transforming growth factor-β1 and secreted frizzled-related protein 2 in inflammation-induced atrophy.

Design: Observational study and prospective animal trial.

Setting: Two ICUs and research laboratory.

Patients/subjects: Twenty-six critically ill patients with Sequential Organ Failure Assessment scores greater than or equal to 8 underwent a skeletal muscle biopsy from the vastus lateralis at median day 5 in ICU. Four patients undergoing elective orthopedic surgery served as controls. To search for signaling pathways enriched in muscle of ICU-acquired weakness patients, a gene set enrichment analysis of our recently published gene expression profiles was performed. Quantitative reverse transcriptase-polymerase chain reaction, Western blot, and immunohistochemistry were used to analyze secreted frizzled-related protein 2 expression and protein content. A mouse model of inflammation-induced skeletal muscle atrophy due to polymicrobial sepsis and cultured myocytes were used for mechanistic analyses.

Interventions: None.

Measurements and main results: Gene set enrichment analysis uncovered transforming growth factor-β1 signaling activation in vastus lateralis from ICU-acquired weakness patients. Muscular secreted frizzled-related protein 2 expression was reduced after 5 days in ICU. Likewise, muscular secreted frizzled-related protein 2 expression was decreased early and continuously in mice with inflammation-induced atrophy. In muscle, secreted frizzled-related protein 2 was predominantly contained in fast twitch/type II myofibers. Secreted frizzled-related protein 2 physically interacted and colocalized with transforming growth factor-β1 through its cysteine-rich domain. Finally, secreted frizzled-related protein 2 prevented transforming growth factor-β1-induced atrophy in C2C12 myotubes.

Conclusions: Muscular secreted frizzled-related protein 2 is down-regulated in ICU-acquired weakness patients and mice with inflammation-induced muscle atrophy. Decreased secreted frizzled-related protein 2 possibly establishes a positive feedback loop enhancing transforming growth factor-β1-mediated atrophic effects in inflammation-induced atrophy.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources