Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016;41(5):573-81.
doi: 10.2131/jts.41.573.

Sodium para-aminosalicylate protected cultured basal ganglia astrocytes from manganese-induced DNA damages and alteration of amino acid neurotransmitter levels

Affiliations
Free article

Sodium para-aminosalicylate protected cultured basal ganglia astrocytes from manganese-induced DNA damages and alteration of amino acid neurotransmitter levels

Shao-Jun Li et al. J Toxicol Sci. 2016.
Free article

Abstract

Sodium para-aminosalicylate (PAS-Na) was first applied successfully in clinical treatment of two manganism patients with good prognosis. However, the mechanism of how PAS-Na protects against Mn-induced neurotoxicity is still elusive. The current study was conducted to explore the effects of PAS-Na on Mn-induced basal ganglia astrocyte injury, and the involvement of amino acid neurotransmitter in vitro. Basal ganglia astrocytes were exposed to 500 μM manganese chloride (MnCl2) for 24 hr, following by 50, 150, or 450 μM PAS-Na treatment for another 24 hr. MnCl2 significantly decreased viability of astrocytes and induced DNA damages via increasing the percentage of tail DNA and Olive tail moment of DNA. Moreover, Mn interrupted amino acid neurotransmitters by decreasing Gln levels and increasing Glu, Gly levels. In contrast, PAS-Na treatment reversed the aforementioned Mn-induced toxic effects on basal ganglia astrocytes. Taken together, our results demonstrated that excessive Mn exposure may induce toxic effects on basal ganglia astrocytes, while PAS-Na could protect basal ganglia astrocytes from Mn-induced neurotoxicity.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources