Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Dec;95(12):552-562.
doi: 10.1016/j.ejcb.2016.09.002. Epub 2016 Sep 20.

United we stand: Adhesion and molecular mechanisms driving cell fusion across species

Affiliations
Review

United we stand: Adhesion and molecular mechanisms driving cell fusion across species

Francesca Zito et al. Eur J Cell Biol. 2016 Dec.

Abstract

Cell-cell fusion is a physiological process playing an essential role for fertilization, shaping organs, tissue repair and immune defense in multicellular organisms. Recent research in the field aims to understand why two or more cells fuse each other and to decipher the general mechanisms regulating this process. Few basic and general steps can be identified, i.e. migration, adhesion and fusion, which are common to different types of cells. As pre-fused and fused cells undergo dramatic changes in their ultrastructure and behavior, the coordinated action of multiple factors is required, including adhesion molecules, cell surface receptors, intracellular kinases, transcription factors, and miRNAs. Although a number of reviews on cell-cell fusion have been published over the years, comprehensive reviews that broadly summarize this process including extracellular and intracellular cues are lacking. For example, a link between cell fusion and adhesive molecules and/or miRNAs has rarely been highlighted in the recent literature. In this review, we will summarize some molecular mechanisms controlling the process of somatic cell-cell fusion during embryonic development. We will specially focus on adhesive molecules, ECM components and miRNAs, providing a summary of important findings on their role in mediating this process in few model systems, in vertebrate and invertebrate organisms.

Keywords: Extracellular matrix; Migration; Osteoclasts; Primary mesenchyme cells; Transcription factors; miRNAs.

PubMed Disclaimer

Substances

LinkOut - more resources