Ferroelectricity by Bose-Einstein condensation in a quantum magnet
- PMID: 27666875
- PMCID: PMC5052672
- DOI: 10.1038/ncomms12822
Ferroelectricity by Bose-Einstein condensation in a quantum magnet
Abstract
The Bose-Einstein condensation is a fascinating phenomenon, which results from quantum statistics for identical particles with an integer spin. Surprising properties, such as superfluidity, vortex quantization or Josephson effect, appear owing to the macroscopic quantum coherence, which spontaneously develops in Bose-Einstein condensates. Realization of Bose-Einstein condensation is not restricted in fluids like liquid helium, a superconducting phase of paired electrons in a metal and laser-cooled dilute alkali atoms. Bosonic quasi-particles like exciton-polariton and magnon in solids-state systems can also undergo Bose-Einstein condensation in certain conditions. Here, we report that the quantum coherence in Bose-Einstein condensate of the magnon quasi particles yields spontaneous electric polarization in the quantum magnet TlCuCl3, leading to remarkable magnetoelectric effect. Very soft ferroelectricity is realized as a consequence of the O(2) symmetry breaking by magnon Bose-Einstein condensation. The finding of this ferroelectricity will open a new window to explore multi-functionality of quantum magnets.
Figures






Similar articles
-
Coherent zero-state and pi-state in an exciton-polariton condensate array.Nature. 2007 Nov 22;450(7169):529-32. doi: 10.1038/nature06334. Nature. 2007. PMID: 18033292
-
Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping.Nature. 2006 Sep 28;443(7110):430-3. doi: 10.1038/nature05117. Nature. 2006. PMID: 17006509
-
Magnon Bose-Einstein condensation and spin superfluidity.J Phys Condens Matter. 2010 Apr 28;22(16):164210. doi: 10.1088/0953-8984/22/16/164210. Epub 2010 Mar 30. J Phys Condens Matter. 2010. PMID: 21386416
-
Exciton-Polaritons and Their Bose-Einstein Condensates in Organic Semiconductor Microcavities.Adv Mater. 2022 Jan;34(4):e2106095. doi: 10.1002/adma.202106095. Epub 2021 Dec 8. Adv Mater. 2022. PMID: 34881466 Review.
-
Spin current as a probe of quantum materials.Nat Mater. 2020 Feb;19(2):139-152. doi: 10.1038/s41563-019-0456-7. Epub 2019 Aug 26. Nat Mater. 2020. PMID: 31451780 Review.
Cited by
-
Double dome structure of the Bose-Einstein condensation in diluted S = 3/2 quantum magnets.Nat Commun. 2023 Mar 10;14(1):1260. doi: 10.1038/s41467-023-36725-4. Nat Commun. 2023. PMID: 36898999 Free PMC article.
References
-
- Nikuni T., Oshikawa M., Oosawa A. & Tanaka H. Bose–Einstein condensation of diluted magnons in TlCuCl3. Phys. Rev. Lett. 84, 5868–5871 (2000). - PubMed
-
- Matsumoto M., Normand B., Rice T. M. & Sigrist M. Magnon dispersion in the field-induced magnetically ordered phase of TlCuCl3. Phys. Rev. Lett. 89, 077203 (2002). - PubMed
-
- Matsumoto M., Normand B., Rice T. M. & Sigrist M. Field- and pressure-induced magnetic quantum phase transitions in TlCuCl3. Phys. Rev. B 69, 054423 (2004).
-
- Cavadini N. et al. Magnetic excitations in the spin system TlCuCl3. Phys. Rev. B 63, 172414 (2001).
-
- Oosawa A. et al. Magnetic excitations in the quantum spin system TlCuCl3. Phys. Rev. B 65, 094426 (2002).
LinkOut - more resources
Full Text Sources
Other Literature Sources