Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Dec:41:60-85.
doi: 10.1016/j.pupt.2016.09.010. Epub 2016 Sep 22.

Inundation of asthma target research: Untangling asthma riddles

Affiliations
Review

Inundation of asthma target research: Untangling asthma riddles

Jatinder Singh et al. Pulm Pharmacol Ther. 2016 Dec.

Abstract

Asthma is an inveterate inflammatory disorder, delineated by the airway inflammation, bronchial hyperresponsiveness (BHR) and airway wall remodeling. Although, asthma is a vague term, and is recognized as heterogenous entity encompassing different phenotypes. Targeting single mediator or receptor did not prove much clinical significant, as asthma is complex disease involving myriad inflammatory mediators. Asthma may probably involve a large number of different types of molecular and cellular components interacting through complex pathophysiological pathways. This review covers the past, present, and future therapeutic approaches and pathophysiological mechanisms of asthma. Furthermore, review describe importance of targeting several mediators/modulators and receptor antagonists involved in the physiopathology of asthma. Novel targets for asthma research include Galectins, Immunological targets, K + Channels, Kinases and Transcription Factors, Toll-like receptors, Selectins and Transient receptor potential channels. But recent developments in asthma research are very promising, these include Bitter taste receptors (TAS2R) abated airway obstruction in mouse model of asthma and Calcium-sensing receptor obliterate inflammation and in bronchial hyperresponsiveness allergic asthma. All these progresses in asthma targets, and asthma phenotypes exploration are auspicious in untangling of asthma riddles.

Keywords: Airway inflammation; Asthma; Asthma receptors; Bitter taste receptors; Calcium-sensing receptor; T cells; Transcription factors.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances