Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Oct 19;138(41):13597-13603.
doi: 10.1021/jacs.6b06467. Epub 2016 Oct 4.

Allosteric Regulation of the Rotational Speed in a Light-Driven Molecular Motor

Affiliations

Allosteric Regulation of the Rotational Speed in a Light-Driven Molecular Motor

Adele Faulkner et al. J Am Chem Soc. .

Abstract

The rotational speed of an overcrowded alkene-based molecular rotary motor, having an integrated 4,5-diazafluorenyl coordination motif, can be regulated allosterically via the binding of metal ions. DFT calculations have been used to predict the relative speed of rotation of three different (i.e., zinc, palladium, and platinum) metal dichloride complexes. The photochemical and thermal isomerization behavior of these complexes has been studied in detail using UV-vis and 1H NMR spectroscopy. Our results confirm that metal coordination induces a contraction of the diazafluorenyl lower half, resulting in a reduction of the steric hindrance in the "fjord" region of the molecule, which causes an increase of the rotational speed. Importantly, metal complexation can be accomplished in situ and is found to be reversible upon the addition of a competing ligand. Consequently, the rotational behavior of these molecular motors can be dynamically controlled with chemical additives.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. (A) Isomerization Behavior of Molecular Motor L1 and (B) Rotary Speed Regulation via Reversible Metal Complexation
Please note that the two line drawings for stable L1, as well as those for unstable L1, represent identical molecular structures with different viewpoints.
Figure 1
Figure 1
Plots of the relative Gibbs free energies (20 °C) between the stable, unstable, and transition state (TS) geometries of (A) Zn(Cl)2(L1), (B) Pd(Cl)2(L1), and (C) Pt(Cl)2(L1) obtained by DFT using the TPSSTPSS/6-31G+(d,p):LANL2DZ level of theory. For the computed data of uncomplexed L1, see ref (19).
Figure 2
Figure 2
UV–vis absorption spectra of (A) Zn(Cl)2(L1), (B) Pd(Cl)2(L1), and (C) Pt(Cl)2(L1) in degassed CH2Cl2 (2 × 10–5 M) before (solid line) and after (dashed line) irradiation with 365 nm light at −20 °C.
Figure 3
Figure 3
(A) 1H NMR spectrum of L1 (2 × 10–3 M solution in CD2Cl2/CD3OD) and 1H NMR spectrum after (B) the addition of either ZnCl2 to the solution of L1, which generates Zn(Cl)2(L1), or (C) the addition of Na2[PdCl4] to L1, which generates Pd(Cl)2(L1).
Figure 4
Figure 4
UV–vis spectrum of L1 (2 × 10–5 M in CH2Cl2/CH3OH, 40:1, solid line) upon addition of either (A) ZnCl2 or (B) Na2[PdCl4] (dashed line) followed by the addition of pyridine (dotted line).

References

    1. Schliwa M.Molecular Motors; Wiley-VCH: Weinheim, Germany, 2003.
    1. Mallik R.; Gross S. P. Curr. Biol. 2004, 14, R971–R982. 10.1016/j.cub.2004.10.046. - DOI - PubMed
    1. For selected reviews, see:

    2. Balzani V.; Credi A.; Raymo F. M.; Stoddart J. F. Angew. Chem., Int. Ed. 2000, 39, 3348–3397. 10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X. - DOI - PubMed
    3. Balzani V.; Credi A.; Venturi M.. Molecular Devices and Machines – A Journey into the Nano World; Wiley-VCH: Weinheim, Germany, 2003.
    4. Kinbara K.; Aida T. Chem. Rev. 2005, 105, 1377–1400. 10.1021/cr030071r. - DOI - PubMed
    5. Browne W. R.; Feringa B. L. Nat. Nanotechnol. 2006, 1, 25–35. 10.1038/nnano.2006.45. - DOI - PubMed
    6. Champin B.; Mobian P.; Sauvage J.-P. Chem. Soc. Rev. 2007, 36, 358–366. 10.1039/B604484K. - DOI - PubMed
    7. Kay E. R.; Leigh D. A.; Zerbetto F. Angew. Chem., Int. Ed. 2007, 46, 72–191. 10.1002/anie.200504313. - DOI - PubMed
    8. Coskun A.; Banaszak M.; Astumian R. D.; Stoddart J. F.; Grzybowski B. A. Chem. Soc. Rev. 2012, 41, 19–30. 10.1039/C1CS15262A. - DOI - PubMed
    9. Bruns C. J.; Stoddart J. F. Acc. Chem. Res. 2014, 47, 2186–2199. 10.1021/ar500138u. - DOI - PubMed
    10. Credi A.; Silvi S.; Venturi M. Top. Curr. Chem. 2014, 354, 1–34. 10.1007/128_2013_509. - DOI - PubMed
    11. Erbas-Cakmak S.; Leigh D. A.; McTernan C. T.; Nussbaumer A. L. Chem. Rev. 2015, 115, 10081–10206. 10.1021/acs.chemrev.5b00146. - DOI - PMC - PubMed
    12. Kay E. R.; Leigh D. A. Angew. Chem., Int. Ed. 2015, 54, 10080–10088. 10.1002/anie.201503375. - DOI - PMC - PubMed
    13. Abendroth J. M.; Bushuyev O. S.; Weiss P. S.; Barrett C. J. ACS Nano 2015, 9, 7746–7768. 10.1021/acsnano.5b03367. - DOI - PubMed
    14. Peplow M. Nature 2015, 525, 18–21. 10.1038/525018a. - DOI - PubMed
    1. For selected examples, see:

    2. Kelly T. R.; De Silva H.; Silva R. A. Nature 1999, 401, 150–152. 10.1038/43639. - DOI - PubMed
    3. Koumura N.; Zijlstra R. W. J.; van Delden R. A.; Harada N.; Feringa B. L. Nature 1999, 401, 152–155. 10.1038/43646. - DOI - PubMed
    4. Leigh D. A.; Wong J. K. Y.; Dehez F.; Zerbetto F. Nature 2003, 424, 174–179. 10.1038/nature01758. - DOI - PubMed
    5. Badjic J. D.; Balzani V.; Credi A.; Silvi S.; Stoddart J. F. Science 2004, 303, 1845–1849. 10.1126/science.1094791. - DOI - PubMed
    6. Hernández J. V.; Kay E. R.; Leigh D. A. Science 2004, 306, 1532–1537. 10.1126/science.1103949. - DOI - PubMed
    7. Fletcher S. P.; Dumur F.; Pollard M. M.; Feringa B. L. Science 2005, 310, 80–82. 10.1126/science.1117090. - DOI - PubMed
    8. Wilson M. R.; Solá J.; Carlone A.; Goldup S. M.; Lebrasseur N.; Leigh D. A. Nature 2016, 534, 235–240. 10.1038/nature18013. - DOI - PubMed
    9. Collins B. S. L.; Kistemaker J. C. M.; Otten E.; Feringa B. L. Nat. Chem. 2016, 8, 860–866. 10.1038/nchem.2543. - DOI
    1. Takeuchi M.; Ikeda M.; Sugasaki A.; Shinkai S. Acc. Chem. Res. 2001, 34, 865–873. 10.1021/ar0000410. - DOI - PubMed
    2. Kovbasyuk L.; Krämer R. Chem. Rev. 2004, 104, 3161–3188. 10.1021/cr030673a. - DOI - PubMed
    3. Oliveri C. G.; Ulmann P. A.; Wiester M. J.; Mirkin C. A. Acc. Chem. Res. 2008, 41, 1618–1629. 10.1021/ar800025w. - DOI - PMC - PubMed
    4. Wiester M. J.; Ulmann P. A.; Mirkin C. A. Angew. Chem., Int. Ed. 2011, 50, 114–137. 10.1002/anie.201000380. - DOI - PubMed

LinkOut - more resources