Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Jun 8;165(1):71-7.
doi: 10.1016/0014-2999(89)90771-1.

Muscarinic receptor binding characteristics of a human neuroblastoma SK-N-SH and its clones SH-SY5Y and SH-EP1

Affiliations

Muscarinic receptor binding characteristics of a human neuroblastoma SK-N-SH and its clones SH-SY5Y and SH-EP1

D G Lambert et al. Eur J Pharmacol. .

Abstract

The present study examines the muscarinic receptor binding characteristics of parent human neuroblastoma (SK-N-SH) and its neuroblast (SH-SY5Y) and epithelial-like (SH-EP1) clones using [3H]methylscopolamine [( 3H]NMS). Specific [3H]NMS binding to intact SK-N-SH and SH-SY5Y cells was saturable with a Kd of 0.2 nM and Bmax of 100-150 fmol/mg protein. Specific [3H]NMS binding to whole cell preparations of SH-EP 1 could not be detected. Pharmacological analysis of the binding site both in whole cells and membranes of SK-N-SH are indicative of an homogeneous receptor population possessing low affinity for the M1-selective antagonist pirenzepine. The muscarinic receptors expressed by the neuroblast clone, SH-SY5Y were further characterized and shown to have the properties of an homogeneous M3 subtype with low affinity for the M1-selective antagonist pirenzepine and the M2-cardioselective AFDX-116 but high affinity for 4-diphenylacetoxy-N-methyl piperidine methiodide (4-DAMP). In conclusion the SH-SY5Y neuroblastoma should provide an important human neuronal cell model with which to define the regulation of post-receptor events driven by a single receptor population.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources