Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Sep 15;264(26):15316-22.

Defective lysosomal egress of free sialic acid (N-acetylneuraminic acid) in fibroblasts of patients with infantile free sialic acid storage disease

Affiliations
  • PMID: 2768266
Free article

Defective lysosomal egress of free sialic acid (N-acetylneuraminic acid) in fibroblasts of patients with infantile free sialic acid storage disease

F Tietze et al. J Biol Chem. .
Free article

Abstract

Egress of free NeuAc from normal lysosome-rich granular fractions was assessed at NeuAc concentrations of up to 221 pmol/hexosaminidase unit, achieved by exposure of growing fibroblasts to 40-125 nM N-acetylmannosamine for up to 7 days. The normal velocity of NeuAc egress increased with NeuAc loading and with temperature, exhibiting a Q10 of 2.4, characteristic of carrier-mediated transport. Fibroblasts cultured from five patients with infantile free sialic acid storage disease (ISSD) contained approximately 139 nmol of free NeuAc/mg of whole cell protein, or 100 times the normal level. Differential centrifugation, as well as density gradient analysis using 25% Percoll, showed that the stored NeuAc cosedimented with the lysosomal enzyme beta-hexosaminidase. The velocity of appearance of free NeuAc outside ISSD granular fractions was negligible, even at initial loading levels of up to 3500 pmol/hexosaminidase unit. The lack of egress from ISSD granular fractions was found for both endogenous and N-acetylmannosamine-derived NeuAc. Fibroblasts from ISSD parents did not accumulate excess free NeuAc and did not display a velocity of NeuAc egress significantly different from normal. The defect in ISSD, like that in Salla disease, appears to be an impairment of carrier-mediated transport of free NeuAc across the lysosomal membrane. Clinical and biochemical differences between Salla disease and ISSD may reflect differences in the amount of residual NeuAc transport capacity.

PubMed Disclaimer

Publication types

LinkOut - more resources