Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2016 Jul;27(7):573-87.
doi: 10.1080/1062936X.2016.1217271.

Comparison of in silico tools for binding site prediction applied for structure-based design of autolysin inhibitors

Affiliations
Comparative Study

Comparison of in silico tools for binding site prediction applied for structure-based design of autolysin inhibitors

T Tibaut et al. SAR QSAR Environ Res. 2016 Jul.

Abstract

Autolysin E (AtlE) is a bacteriolytic enzyme which plays an important role in division and growth of bacterial cells and therefore represents a promising potential drug target. Its 3D structure has been recently elucidated. We used in silico prediction tools to study substrate or ligand (inhibitor) binding regions of AtlE. We applied several freely available tools and a commercial tool for binding site identification and compared results of the prediction. Calculation time, number of predictions and output data provided by specific software vary according to the different approaches utilized by specific method categories. Despite different approaches, binding sites in similar locations on the protein were predicted. Specific amino acid residues that form these binding sites were predicted as binding residues. The predicted residues, especially those with predicted highest conservation score, could theoretically have catalytic and binding properties. According to our results, we assume that E138, which has the highest conservation score, is the catalytic residue and F161, G162 and Y224, which are also highly conserved, are responsible for substrate binding. Ligands developed with binding specificity towards these residues could inhibit the catalysis and binding of the substrate of AtlE. The molecules with inhibitory potency could therefore represent potential new antibacterial agents.

Keywords: Binding site identification; autolysin E; binding residues; in silico tools comparison; potential drug target.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources