Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jul;165(Pt A):27-32.
doi: 10.1016/j.mad.2016.09.007. Epub 2016 Sep 26.

DNA damage responses and stress resistance: Concepts from bacterial SOS to metazoan immunity

Affiliations
Review

DNA damage responses and stress resistance: Concepts from bacterial SOS to metazoan immunity

Ashley B Williams et al. Mech Ageing Dev. 2017 Jul.

Abstract

The critical need for species preservation has driven the evolution of mechanisms that integrate stress signals from both exogenous and endogenous sources. Past research has been largely focused on cell-autonomous stress responses; however, recently their systemic outcomes within an organism and their implications at the ecological and species levels have emerged. Maintenance of species depends on the high fidelity transmission of the genome over infinite generations; thus, many pathways exist to monitor and restore the integrity of the genome and to coordinate DNA repair with other cellular processes, such as cell division and growth. The specifics of these DNA damage responses (DDRs) vary vastly but some general themes are conserved from ancient organisms, such as bacteria and archaea, to humans. Despite decades of research, however, DDRs still have many layers of complexity and some surprises left to be discovered. One of the most interesting current research topics is the link between DNA damage and stress resistance: the outcomes of DDRs can protect the organism from other secondary challenges. At this time, these types of responses are best characterized in bacteria and the simple metazoan model, Caenorhabditis elegans, but it is becoming clear that similar processes also exist in higher organisms.

Keywords: Caenorhabditis elegans; DNA damage response; Escherichia coli; Immunity; SOS response.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Responses to DNA damage in diverse species share common features to ensure species preservation.
The responses of three organisms to DNA damage are summarized in parallel to demonstrate the universality of the logical framework of how DNA damage responses can promote the preservation of species, despite vast divergence in the molecular mechanisms.

References

    1. Ahmed S, Hodgkin J. MRT-2 checkpoint protein is required for germline immortality and telomere replication in C. elegans. Nature. 2000;403:159–164. doi: 10.1038/35003120. - DOI - PubMed
    1. An JH, Vranas K, Lucke M, Inoue H, Hisamoto N, Matsumoto K, Blackwell TK. Regulation of the Caenorhabditis elegans oxidative stress defense protein SKN-1 by glycogen synthase kinase-3. Proc Natl Acad Sci USA. 2005;102:16275–16280. doi: 10.1073/pnas.0508105102. - DOI - PMC - PubMed
    1. Baharoglu Z, Mazel D. SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol Rev. 2014;38:1126–1145. doi: 10.1111/1574-6976.12077. - DOI - PubMed
    1. Bartek J, Lukas J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol. 2007;19:238–245. doi: 10.1016/j.ceb.2007.02.009. - DOI - PubMed
    1. Berman JR, Kenyon C. Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell. 2006;124:1055–1068. - PubMed

LinkOut - more resources