Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Aug;62(2):487-94.
doi: 10.1152/jn.1989.62.2.487.

Influence of somatosensory cortex on different classes of cat motor cortex output neuron

Affiliations

Influence of somatosensory cortex on different classes of cat motor cortex output neuron

P Zarzecki. J Neurophysiol. 1989 Aug.

Abstract

1. Multiple output pathways originate from motor cortex. In this study on cats, six classes of corticofugal neurons were identified by antidromic activation. Corticocallosal neurons of layer III were activated antidromically by stimulation of contralateral motor cortex. Layer V neurons were identified by antidromic activation from cerebral peduncle, red nucleus, lateral reticular nucleus of medulla, or spinal cord. Corticothalamic neurons were identified in layer VI. All the identified neurons were tested for input from primary somatosensory cortex. 2. Neurons of all corticofugal groups received excitatory inputs from primary somatosensory cortex. The shortest latency corticocortical effects of 1.2-2.5 ms were found for corticocallosal neurons of layer III, and for layer V neurons which projected axons through the cerebral peduncle, to red nucleus, and to spinal cord. 3. Nearby neurons, projecting to the same of different targets, were affected nonuniformly by corticocortical inputs. This finding supports the conclusion that specificity of afferent connections within cerebral cortex is not determined by anatomic segregation of cell bodies nor by projection target of efferent neurons. 4. These selectively distributed input connectivities suggest that even a small region of motor cortex could send different signals to its diverse targets.

PubMed Disclaimer

Publication types

LinkOut - more resources