Laboratory evolution of artificially expanded DNA gives redesignable aptamers that target the toxic form of anthrax protective antigen
- PMID: 27701076
- PMCID: PMC5175368
- DOI: 10.1093/nar/gkw890
Laboratory evolution of artificially expanded DNA gives redesignable aptamers that target the toxic form of anthrax protective antigen
Abstract
Reported here is a laboratory in vitro evolution (LIVE) experiment based on an artificially expanded genetic information system (AEGIS). This experiment delivers the first example of an AEGIS aptamer that binds to an isolated protein target, the first whose structural contact with its target has been outlined and the first to inhibit biologically important activities of its target, the protective antigen from Bacillus anthracis We show how rational design based on secondary structure predictions can also direct the use of AEGIS to improve the stability and binding of the aptamer to its target. The final aptamer has a dissociation constant of ∼35 nM. These results illustrate the value of AEGIS-LIVE for those seeking to obtain receptors and ligands without the complexities of medicinal chemistry, and also challenge the biophysical community to develop new tools to analyze the spectroscopic signatures of new DNA folds that will emerge in synthetic genetic systems replacing standard DNA and RNA as platforms for LIVE.
© The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Figures







Similar articles
-
Screening and characterization of high-affinity ssDNA aptamers against anthrax protective antigen.J Biomol Screen. 2011 Feb;16(2):266-71. doi: 10.1177/1087057110391787. Epub 2011 Jan 18. J Biomol Screen. 2011. PMID: 21245470
-
Selection of a DNA aptamer that binds 8-OHdG using GMP-agarose.Bioorg Med Chem Lett. 2009 Jul 1;19(13):3619-22. doi: 10.1016/j.bmcl.2009.04.130. Epub 2009 May 3. Bioorg Med Chem Lett. 2009. PMID: 19450981
-
An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes.Methods. 2016 Mar 15;97:51-7. doi: 10.1016/j.ymeth.2015.12.005. Epub 2015 Dec 8. Methods. 2016. PMID: 26678795
-
SELEX Modifications and Bioanalytical Techniques for Aptamer-Target Binding Characterization.Crit Rev Anal Chem. 2016 Nov;46(6):521-37. doi: 10.1080/10408347.2016.1157014. Epub 2016 Mar 15. Crit Rev Anal Chem. 2016. PMID: 26980177 Review.
-
Replacing antibodies with aptamers in lateral flow immunoassay.Biosens Bioelectron. 2015 Sep 15;71:230-242. doi: 10.1016/j.bios.2015.04.041. Epub 2015 Apr 14. Biosens Bioelectron. 2015. PMID: 25912679 Review.
Cited by
-
Regulation of Protein Activity and Cellular Functions Mediated by Molecularly Evolved Nucleic Acids.Angew Chem Int Ed Engl. 2019 Feb 4;58(6):1621-1625. doi: 10.1002/anie.201809010. Epub 2019 Jan 14. Angew Chem Int Ed Engl. 2019. PMID: 30556364 Free PMC article.
-
Recent Advances in Aptamer Discovery and Applications.Molecules. 2019 Mar 7;24(5):941. doi: 10.3390/molecules24050941. Molecules. 2019. PMID: 30866536 Free PMC article. Review.
-
Snapshots of an evolved DNA polymerase pre- and post-incorporation of an unnatural nucleotide.Nucleic Acids Res. 2018 Sep 6;46(15):7977-7988. doi: 10.1093/nar/gky552. Nucleic Acids Res. 2018. PMID: 29986111 Free PMC article.
-
Discovery and evolution of RNA and XNA reverse transcriptase function and fidelity.Nat Chem. 2020 Aug;12(8):683-690. doi: 10.1038/s41557-020-0502-8. Epub 2020 Jul 20. Nat Chem. 2020. PMID: 32690899 Free PMC article.
-
Electrochemical Reduction and Oxidation of Eight Unnatural 2'-Deoxynucleosides at a Pyrolytic Graphite Electrode.Electrochim Acta. 2020 Dec 1;362:137210. doi: 10.1016/j.electacta.2020.137210. Epub 2020 Oct 5. Electrochim Acta. 2020. PMID: 33087943 Free PMC article.
References
-
- Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249:505–510. - PubMed
-
- Ellington A.D., Szostak J.W. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature. 1992;355:850–852. - PubMed
-
- Battersby T.R., Ang D.N., Burgstaller P., Jurczyk S.C., Bowser M.T., Buchanan D.D., Kennedy R.T., Benner S.A. Quantitative analysis of receptors for adenosine nucleotides obtained via in vitro selection from a library incorporating a cationic nucleotide analog. J. Am. Chem. Soc. 1999;121:9781–9789. - PubMed
-
- Jäger S., Rasched G., Kornreich-Leshem H., Engeser M., Thum O., Famulok M. A versatile toolbox for variable DNA functionalization at high density. J. Am. Chem. Soc. 2005;127:15071–15082. - PubMed
-
- Hollenstein M., Hipolito C.J., Lam C.H., Perrin D.M. A DNAzyme with three protein-like functional groups: enhancing catalytic efficiency of M2+-independent RNA cleavage. Chembiochem. 2009;10:1988–1992. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources