Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Oct 26;138(42):13846-13849.
doi: 10.1021/jacs.6b09240. Epub 2016 Oct 13.

Highly Efficient Cascade Reaction for Selective Formation of Spirocyclobutenes from Dienallenes via Palladium-Catalyzed Oxidative Double Carbocyclization-Carbonylation-Alkynylation

Affiliations

Highly Efficient Cascade Reaction for Selective Formation of Spirocyclobutenes from Dienallenes via Palladium-Catalyzed Oxidative Double Carbocyclization-Carbonylation-Alkynylation

Youai Qiu et al. J Am Chem Soc. .

Abstract

A highly selective cascade reaction that allows the direct transformation of dienallenes to spirocyclobutenes (spiro[3.4]octenes) as single diastereoisomers has been developed. The reaction involves formation of overall four C-C bonds and proceeds via a palladium-catalyzed oxidative transformation with insertion of olefin, olefin, and carbon monoxide. Under slightly different reaction conditions, an additional CO insertion takes place to give spiro[4.4]nonenes with formation of overall five C-C bonds.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Previous Work and Present Work
Scheme 2
Scheme 2. Initial Attempt
Scheme 3
Scheme 3. Scope for Formation of 3,
The reaction was conducted in MeCN at 80 °C using 1 (0.2 mmol), 2a (1.5 equiv), F4-BQ (1.1 equiv) in the presence of Pd(TFA)2 (5 mol %). For stereochemical assignment of products by NOE, see Supporting Information (p. S31).
Scheme 4
Scheme 4. Scope for Formation of 4
The reaction was conducted in DCE at room temperature using 1 (0.2 mmol), 2 (1.5 equiv), and BQ (1.1 equiv) in the presence of Pd(TFA)2 (5 mol %).
Scheme 5
Scheme 5. Kinetic Isotope Effect Studies
Reaction conditions: allene 1a (or 1a-d6) (0.2 mmol), Pd(TFA)2 (5 mol %), F4-BQ (1.1 equiv), and phenylactylene 2a (1.5 equiv) in CD3CN under CO (1 atm) at 80 °C.
Scheme 6
Scheme 6. Proposed Mechanisms

Similar articles

Cited by

References

    1. For selected reviews, see:

    2. Rios R. Chem. Soc. Rev. 2012, 41, 1060.10.1039/C1CS15156H. - DOI - PubMed
    3. Kotha S.; Deb A.; Lahiri K.; Manivannan E. Synthesis 2009, 2009, 165.10.1055/s-0028-1083300. - DOI
    4. Ding K.; Han Z.; Wang Z. Chem. - Asian J. 2009, 4, 32.10.1002/asia.200800192. - DOI - PubMed
    5. D'yakonov V. A.; Trapeznikova O. A.; de Meijere A.; Dzhemilev U. M. Chem. Rev. 2014, 114, 5775.10.1021/cr400291c. - DOI - PubMed
    1. For selected reviews involving construction of a quaternary carbon center, see:

    2. Steven A.; Overman L. E. Angew. Chem., Int. Ed. 2007, 46, 5488.10.1002/anie.200700612. - DOI - PubMed
    3. Shimizu M. Angew. Chem., Int. Ed. 2011, 50, 5998.10.1002/anie.201101720. - DOI - PubMed
    4. Wang B.; Tu Y. Acc. Chem. Res. 2011, 44, 1207.10.1021/ar200082p. - DOI - PubMed
    1. For selected examples, see:

    2. Zheng Y.; Tice C. M.; Singh S. B. Bioorg. Med. Chem. Lett. 2014, 24, 3673.10.1016/j.bmcl.2014.06.081. - DOI - PubMed
    3. Welsch M. E.; Snyder S. A.; Stockwell B. R. Curr. Opin. Chem. Biol. 2010, 14, 347.10.1016/j.cbpa.2010.02.018. - DOI - PMC - PubMed
    4. Kotha S.; Mandal K. Tetrahedron Lett. 2004, 45, 1391.10.1016/j.tetlet.2003.12.075. - DOI
    5. Li F.; Tartakoff S. S.; Castle S. L. J. Am. Chem. Soc. 2009, 131, 6674.10.1021/ja9024403. - DOI - PubMed
    6. Chiang Y.-M.; Kuo Y.-H. Tetrahedron Lett. 2003, 44, 5125.10.1016/S0040-4039(03)01116-X. - DOI
    1. Xie J.; Zhou Q. Acc. Chem. Res. 2008, 41, 581.10.1021/ar700137z. - DOI - PubMed
    2. Zhu S.; Cai Y.; Mao H.; Xie J.; Zhou Q. Nat. Chem. 2010, 2, 546.10.1038/nchem.651. - DOI - PubMed
    3. Coulter M. M.; Kou K. G. M.; Galligan B.; Dong V. M. J. Am. Chem. Soc. 2010, 132, 16330.10.1021/ja107198e. - DOI - PubMed
    4. Zhu S.; Song X.; Li Y.; Cai Y.; Zhou Q. J. Am. Chem. Soc. 2010, 132, 16374.10.1021/ja1078464. - DOI - PubMed
    1. For selected reviews, see:

    2. Fürstner A. Chem. Soc. Rev. 2009, 38, 3208.10.1039/b816696j. - DOI - PubMed
    3. Mahatthananchai J.; Bode J. W. Acc. Chem. Res. 2014, 47, 696.10.1021/ar400239v. - DOI - PubMed
    4. Cohen D. T.; Scheidt K. A. Chem. Sci. 2012, 3, 53.10.1039/C1SC00621E. - DOI - PMC - PubMed
    5. Grossmann A.; Enders D. Angew. Chem., Int. Ed. 2012, 51, 314.10.1002/anie.201105415. - DOI - PubMed
    6. Fensterbank L.; Malacria M. Acc. Chem. Res. 2014, 47, 953.10.1021/ar4002334. - DOI - PubMed
    7. Hopkinson M. N.; Richter C.; Schedler M.; Glorius F. Nature 2014, 510, 485.10.1038/nature13384. - DOI - PubMed
    8. For selected examples, see:

    9. Dugal-Tessier J.; O'Bryan E. A.; Schroeder T. B. H.; Cohen D. T.; Scheidt K. A. Angew. Chem., Int. Ed. 2012, 51, 4963.10.1002/anie.201201643. - DOI - PMC - PubMed
    10. Li J.; Sahoo B.; Daniliuc C. G.; Glorius F. Angew. Chem., Int. Ed. 2014, 53, 10515.10.1002/anie.201405178. - DOI - PubMed

LinkOut - more resources