Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Oct 5;10(10):e0005029.
doi: 10.1371/journal.pntd.0005029. eCollection 2016 Oct.

Colorimetric Detection of Plasmodium vivax in Urine Using MSP10 Oligonucleotides and Gold Nanoparticles

Affiliations

Colorimetric Detection of Plasmodium vivax in Urine Using MSP10 Oligonucleotides and Gold Nanoparticles

Yossef Alnasser et al. PLoS Negl Trop Dis. .

Erratum in

Abstract

Plasmodium vivax is the most prevalent cause of human malaria in the world and can lead to severe disease with high potential for relapse. Its genetic and geographic diversities make it challenging to control. P. vivax is understudied and to achieve control of malaria in endemic areas, a rapid, accurate, and simple diagnostic tool is necessary. In this pilot study, we found that a colorimetric system using AuNPs and MSP10 DNA detection in urine can provide fast, easy, and inexpensive identification of P. vivax. The test exhibited promising sensitivity (84%), high specificity (97%), and only mild cross-reactivity with P. falciparum (21%). It is simple to use, with a visible color change that negates the need for a spectrometer, making it suitable for use in austere conditions. Using urine eliminates the need for finger-prick, increasing both the safety profile and patient acceptance of this model.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Urine from P. vivax negative volunteers turned AuNPs blue due to lack of targeted MSP10 DNA while positive P. vivax urine was able to form DS DNA and stabilized AuNPs to stay red in color.
Fig 2
Fig 2. The newly formed MSP10 double stranded DNA in urine was able to stabilize AuNPs to stay red in color.
P. vivax negative urine turned AuNPs’ color to blue which was detected by Spectrophotometer as color switches from red at 520 wavelength (P. vivax positive) into purple-blue at 610 wavelength (P. Vivax negative).
Fig 3
Fig 3. N-Terminal MSP10 oligonucleotide has higher sensitivity, similar specificity and lower cross-reactivity in comparison to C-Terminal segment of MSP10 DNA in detecting P. vivax in urine using AuNPs.

Similar articles

Cited by

References

    1. Tangpukdee N., Duangdee C., Wilairatana P., and Krudsood S., “Malaria Diagnosis: A Brief Review,” Korean J. Parasitol., vol. 47, no. 2, p. 93, 2009. 10.3347/kjp.2009.47.2.93 - DOI - PMC - PubMed
    1. Hay S. I., Guerra C. A., Tatem A. J., Noor A. M., and Snow R. W., “Europe PMC Funders Group The global distribution and population at risk of malaria: past, present, and future,” vol. 4, no. 6, pp. 327–336, 2011. 10.1016/S1473-3099(04)01043-6 - DOI - PMC - PubMed
    1. Martens P. and Hall L., “Malaria on the move: human population movement and malaria transmission. Malaria on the move: human population movement and malaria transmission.,” Emerg. Infect. Dis., vol. 103, no. April, pp. 1–7, 2000. - PMC - PubMed
    1. Guerra C. A., Howes R. E., Patil A. P., Gething P. W., van Boeckel T. P., Temperley W. H., Kabaria C. W., Tatem A. J., Manh B. H., Elyazar I. R. F., Baird J. K., Snow R. W., and Hay S. I., “The international limits and population at risk of Plasmodium vivax transmission in 2009,” PLoS Negl. Trop. Dis., vol. 4, no. 8, 2010. - PMC - PubMed
    1. Rice B. L., Acosta M. M., Pacheco M. A., and a Escalante A., “Merozoite surface protein-3 alpha as a genetic marker for epidemiologic studies in Plasmodium vivax: a cautionary note.,” Malar. J., vol. 12, p. 288, January 2013. 10.1186/1475-2875-12-288 - DOI - PMC - PubMed

MeSH terms