Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Oct 5;11(10):e0161291.
doi: 10.1371/journal.pone.0161291. eCollection 2016.

Quantifying Heterogeneity in Host-Vector Contact: Tsetse (Glossina swynnertoni and G. pallidipes) Host Choice in Serengeti National Park, Tanzania

Affiliations

Quantifying Heterogeneity in Host-Vector Contact: Tsetse (Glossina swynnertoni and G. pallidipes) Host Choice in Serengeti National Park, Tanzania

Harriet Auty et al. PLoS One. .

Abstract

Background: Identifying hosts of blood-feeding insect vectors is crucial in understanding their role in disease transmission. Rhodesian human African trypanosomiasis (rHAT), also known as acute sleeping sickness is caused by Trypanosoma brucei rhodesiense and transmitted by tsetse flies. The disease is commonly associated with wilderness areas of east and southern Africa. Such areas hold a diverse range of species which form communities of hosts for disease maintenance. The relative importance of different wildlife hosts remains unclear. This study quantified tsetse feeding preferences in a wilderness area of great host species richness, Serengeti National Park, Tanzania, assessing tsetse feeding and host density contemporaneously.

Methods: Glossina swynnertoni and G. pallidipes were collected from six study sites. Bloodmeal sources were identified through matching Cytochrome B sequences amplified from bloodmeals from recently fed flies to published sequences. Densities of large mammal species in each site were quantified, and feeding indices calculated to assess the relative selection or avoidance of each host species by tsetse.

Results: The host species most commonly identified in G. swynnertoni bloodmeals, warthog (94/220), buffalo (48/220) and giraffe (46/220), were found at relatively low densities (3-11/km2) and fed on up to 15 times more frequently than expected by their relative density. Wildebeest, zebra, impala and Thomson's gazelle, found at the highest densities, were never identified in bloodmeals. Commonly identified hosts for G. pallidipes were buffalo (26/46), giraffe (9/46) and elephant (5/46).

Conclusions: This study is the first to quantify tsetse host range by molecular analysis of tsetse diet with simultaneous assessment of host density in a wilderness area. Although G. swynnertoni and G. pallidipes can feed on a range of species, they are highly selective. Many host species are rarely fed on, despite being present in areas where tsetse are abundant. These feeding patterns, along with the ability of key host species to maintain and transmit T. b. rhodesiense, drive the epidemiology of rHAT in wilderness areas.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Map of study sites in Serengeti National Park, Tanzania.
The map shows an outline of the protected area boundaries of Serengeti National Park (SNP), Grumeti, Ikorongo and Maswa Game Reserves (GR) and Ngorongoro Conservation Area (NCA), within Northern Tanzania.
Fig 2
Fig 2. Wildlife hosts identified in bloodmeal samples.
The graphs show the percentage of bloodmeals identified per species, out of the total identified samples for (a) Glossina swynnertoni and (b) G. pallidipes. The number of samples identified as each species is shown (n), out of a total of 220 and 46 samples identified for G. swynnertoni and G. pallidipes, respectively. Error bars show 95% binomial confidence intervals.
Fig 3
Fig 3. Feeding indices illustrate selection or avoidance of host species by Glossina swynnertoni and G. pallidipes.
Feeding indices by species and study site on a log scale. Graded colours show the feeding index at each of 6 study sites. Values above 1 indicate a host is selected, values below 1 indicate a host is avoided, by (a) G. swynnertoni and (b) G. pallidipes. Stars indicate significance at p<0.05.

Similar articles

Cited by

References

    1. Welburn SC, Picozzi K, Fevre EM, Coleman PG, Odiit M, et al. (2001) Identification of human-infective trypanosomes in animal reservoir of sleeping sickness in Uganda by means of serum- resistance-associated (SRA) gene. Lancet 358: 2017–2019. - PubMed
    1. Welburn SC, Picozzi K, Fyfe J, Fèvre E, Odiit M, et al. (2005) Control Options for Human Sleeping Sickness in Relation to the Animal Reservoir of Disease In: Osofsky SA, Cleaveland S, Karesh WB, Kock MD, Nyhus PJ, et al., editors. Conservation and Development Interventions at the Wildlife/Livestock Interface: Implications for Wildlife, Livestock and Human Health. IUCN, Gland, Switzerland and Cambridge, UK: pp. 55–61.
    1. Anderson NE, Mubanga J, Fevre EM, Picozzi K, Eisler MC, et al. (2011) Characterisation of the wildlife reservoir community for human and animal trypanosomiasis in the Luangwa Valley, Zambia. PLoS Negl Trop Dis 5: e1211 10.1371/journal.pntd.0001211 - DOI - PMC - PubMed
    1. Geigy R, Mwambu PM, Kauffman M (1971) Sleeping sickness survey in Musoma District, Tanzania: IV. Examination of wild mammals as a potential reservoir for T. rhodesiense. Acta Trop 28: 211–220. - PubMed
    1. Geigy R, Kauffman M (1973) Sleeping sickness survey in the Serengeti area (Tanzania) 1971: I. Examination of large mammals for trypanosomes. Acta Trop 30: 12–23. - PubMed

MeSH terms

LinkOut - more resources