Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Nov 1;50(21):11760-11768.
doi: 10.1021/acs.est.6b01817. Epub 2016 Oct 21.

London Hybrid Exposure Model: Improving Human Exposure Estimates to NO2 and PM2.5 in an Urban Setting

Affiliations
Free article

London Hybrid Exposure Model: Improving Human Exposure Estimates to NO2 and PM2.5 in an Urban Setting

James David Smith et al. Environ Sci Technol. .
Free article

Abstract

Here we describe the development of the London Hybrid Exposure Model (LHEM), which calculates exposure of the Greater London population to outdoor air pollution sources, in-buildings, in-vehicles, and outdoors, using survey data of when and where people spend their time. For comparison and to estimate exposure misclassification we compared Londoners LHEM exposure with exposure at the residential address, a commonly used exposure metric in epidemiological research. In 2011, the mean annual LHEM exposure to outdoor sources was estimated to be 37% lower for PM2.5 and 63% lower for NO2 than at the residential address. These decreased estimates reflect the effects of reduced exposure indoors, the amount of time spent indoors (∼95%), and the mode and duration of travel in London. We find that an individual's exposure to PM2.5 and NO2 outside their residential address is highly correlated (Pearson's R of 0.9). In contrast, LHEM exposure estimates for PM2.5 and NO2 suggest that the degree of correlation is influenced by their exposure in different transport modes. Further development of the LHEM has the potential to increase the understanding of exposure error and bias in time-series and cohort studies and thus better distinguish the independent effects of NO2 and PM2.5.

PubMed Disclaimer

Publication types

LinkOut - more resources