Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 May 1;68(10):2513-2529.
doi: 10.1093/jxb/erw365.

Nitrogen remobilization during leaf senescence: lessons from Arabidopsis to crops

Affiliations
Review

Nitrogen remobilization during leaf senescence: lessons from Arabidopsis to crops

Marien Havé et al. J Exp Bot. .

Abstract

As a result of climate changes, land use and agriculture have to adapt to new demands. Agriculture is responsible for a large part of the greenhouse gas (GHG) emissions that have to be urgently reduced in order to protect the environment. At the same time, agriculture has to cope with the challenges of sustainably feeding a growing world population. Reducing the use of the ammonia-nitrate fertilizers that are responsible for a large part of the GHGs released and that have a negative impact on carbon balance is one of the objectives of precision agriculture. One way to reduce N fertilizers without dramatically affecting grain yields is to improve the nitrogen recycling and remobilization performances of plants. Mechanisms involved in nitrogen recycling, such as autophagy, are essential for nutrient remobilization at the whole-plant level and for seed quality. Studies on leaf senescence and nutrient recycling provide new perspectives for improvement. The aim of this review is to give an overview of the mechanisms involved in nitrogen recycling and remobilization during leaf senescence and to present the different approaches undertaken to improve nitrogen remobilization efficiency using both model plants and crop species.

Keywords: Autophagy; chlorophagy; glutamine synthetase; grain protein content; nitrogen recycling; nitrogen use efficiency; proteolysis..

PubMed Disclaimer

Publication types

LinkOut - more resources