Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jun 3;2(8):1500120.
doi: 10.1002/advs.201500120. eCollection 2015 Aug.

Construction of Efficient 3D Gas Evolution Electrocatalyst for Hydrogen Evolution: Porous FeP Nanowire Arrays on Graphene Sheets

Affiliations

Construction of Efficient 3D Gas Evolution Electrocatalyst for Hydrogen Evolution: Porous FeP Nanowire Arrays on Graphene Sheets

Ya Yan et al. Adv Sci (Weinh). .

Abstract

A novel 3D hierarchical nanocomposite of vertically aligned porous FeP nano-wires on reduced graphene oxide is prepared as a demonstration of constructing an efficient hydrogen evolution catalyst. Extension of this nanostructuring strategy to other functional nanocomposites by combining different dimensional nanomaterials is attractive.

Keywords: hierarchical nanocomposites; hydrogen evolution reaction; porous FeP nanowire arrays; pseudomorphic transformation.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1
Schematic illustration of the formation process of hierarchical FeP NWs/rGO nanocomposite.
Figure 1
Figure 1
A,B) Low‐ and high‐magnification SEM images of the FeO(OH) NWs/rGO precursor, inset of A is the photograph of the precursor obtained after hydrothermal reaction and inset of B is enlarged SEM image of the vertically aligned FeO(OH) NWs. C,D) Low‐ and high‐magnification SEM images of FeP NWs/rGO, inset of C is the photograph of the phosphorized product. E) The SEM image and the corresponding EDX elemental mapping of C, Fe, and P for FeP NWs/rGO composite. F) XRD patterns of the as‐prepared FeO(OH) NWs/rGO precursor and FeP NWs/rGO.
Figure 2
Figure 2
A,B) TEM image of FeP NWs/rGO. C,D) HRTEM image taken from the area as marked in (B) and the corresponding FFT patterns with inverse FFT images for selected areas (inset) (the red arrows index the pores among the nanowires).
Figure 3
Figure 3
A) XPS survey scan and high‐solution spectra of B) C 1s, C) Fe 2p, and D) P 2p for FeP NWs/rGO.
Figure 4
Figure 4
A,B) Polarization curves (B shows polarization curves with current density below 10 mA cm−2). C) The corresponding Tafel plots. D) Electrochemical impedance spectra at −0.09 V versus RHE (inset is the electrical equivalent circuit models for fitting the EIS response of HER on the samples). E) Mass activity for FeP NWs/rGO and these referred catalysts, which are given as current densities (j) normalized in reference to the loading amount of the catalysts (inset: the j calculated at geographic current density of 10 mA cm−2). F) Polarization curves for FeP NWs/rGO and FeP NWs assemblies in 0.5 m H2SO4 initially and after 500 and 1000 cycles at a scan rate of 50 mV s−1 (inset: plot of current density vs time for FeP NWs/rGO electrode under static η = 130 mV for 18 h).

References

    1. a) Laursen A. B., Kegnaes S., Dahl S., Chorkendorff I., Energy Environ. Sci. 2012, 5, 5577;
    2. b) Benck J. D., Hellstern T. R., Kibsgaard J., Chakthranont P., Jaramillo T. F., ACS Catal. 2014, 4, 3957;
    3. c) Tan C., Zhang H., Chem. Soc. Rev. 2014, 43, 4281; - PubMed
    4. d) Yan Y., Xia B., Xu Z., Wang X., ACS Catal. 2014, 4, 1693;
    5. e) Li G., Zhang B., Yu F., Novakova A. A., Krivenkov M. S., Kiseleva T. Y., Chang L., Rao J., Polyakov A. O., Blake G. R., de Groot R. A., Palstra T. T. M., Chem. Mater. 2014, 26, 5821.
    1. a) Xie J., Li S., Zhang X., Zhang J., Wang R., Zhang H., Pan B., Xie Y., Chem. Sci. 2014, 5, 4615;
    2. b) Chen W.‐F., Sasaki K., Ma C., Frenkel A. I., Marinkovic N., Muckerman J. T., Zhu Y., Adzic R. R., Angew. Chem. 2012, 124, 6235; - PubMed
    3. c) Chen W. F., Wang C. H., Sasaki K., Marinkovic N., Xu W., Muckerman J. T., Zhu Y., Adzic R. R., Energy Environ. Sci. 2013, 6, 943;
    4. d) Lai X., Halpert J. E., Wang D., Energy Environ. Sci. 2012, 5, 5604;
    5. e) Duan J., Chen S., Jaroniec M., Qiao S. Z., ACS Nano 2015, 9, 931. - PubMed
    1. a) Chen W. F., Muckerman J. T., Fujita E., Chem. Commun. 2013, 49, 8896; - PubMed
    2. b) Wan C., Regmi Y. N., Leonard B. M., Angew. Chem. Int. Ed. 2014, 53, 6407; - PubMed
    3. c) Cao B., Veith G. M., Neuefeind J. C., Adzic R. R., Khalifah P. G., J. Am. Chem. Soc. 2013, 135, 19186; - PubMed
    4. d) Zhang H., Wang Y., Wang D., Li Y., Liu X., Liu P., Yang H., An T., Tang Z., Zhao H., Small 2014, 10, 3371. - PubMed
    1. a) Xing Z., Liu Q., Asiri A. M., Sun X., Adv. Mater. 2014, 26, 5702; - PubMed
    2. b) Huang Z., Chen Z., Chen Z., Lv C., Meng H., Zhang C., ACS Nano 2014, 8, 8121; - PubMed
    3. c) McEnaney J. M., Crompton J. C., Callejas J. F., Popczun E. J., Biacchi A. J., Lewis N. S., Schaak R. E., Chem. Mater. 2014, 26, 4826;
    4. d) Pu Z., Liu Q., Jiang P., Asiri A. M., Obaid A. Y., Sun X., Chem. Mater. 2014, 26, 4326;
    5. e) Jiang P., Liu Q., Sun X., Nanoscale 2014, 6, 13440; - PubMed
    6. f) Bai Y., Zhang H., Li X., Liu L., Xu H., Qiu H., Wang Y., Nanoscale 2015, 7, 1446; - PubMed
    7. g) Pu Z., Liu Q., Tang C., Asiri A. M., Sun X., Nanoscale 2014, 6, 11031; - PubMed
    8. h) Popczun E. J., Read C. G., Roske C. W., Lewis N. S., Schaak R. E., Angew. Chem. Int. Ed. 2014, 53, 5427; - PubMed
    9. i) Xing Z., Liu Q., Asiri A. M., Sun X., ACS Catal. 2015, 5, 145;
    10. j) Xiao P., Sk M. A., Thia L., Ge X., Lim R. J., Wang J.‐Y., Lim K. H., Wang X., Energy Environ. Sci. 2014, 7, 2624;
    11. k) Oyama S. T., J. Catal. 2003, 216, 343;
    12. l) Zheng Y., Jiao Y., Jaroniec M., Qiao S. Z., Angew. Chem. Int. Ed. 2015, 54, 52. - PubMed
    1. Oyama S. T., Gott T., Zhao H., Lee Y.‐K., Catal. Today 2009, 143, 94.