Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Dec 12;22(50):18179-18189.
doi: 10.1002/chem.201603839. Epub 2016 Nov 9.

Redox-Neutral Aromatization of Cyclic Amines: Mechanistic Insights and Harnessing of Reactive Intermediates for Amine α- and β-C-H Functionalization

Affiliations

Redox-Neutral Aromatization of Cyclic Amines: Mechanistic Insights and Harnessing of Reactive Intermediates for Amine α- and β-C-H Functionalization

Longle Ma et al. Chemistry. .

Abstract

Cyclic amines such as pyrrolidine and piperidine are known to undergo condensations with aldehydes to furnish pyrrole and pyridine derivatives, respectively. A combined experimental and computational study provides detailed insights into the mechanism of pyrrole formation. A number of reactive intermediates (e.g., azomethine ylides, conjugated azomethine ylides, enamines) were intercepted, outlining strategies for circumventing aromatization as a valuable pathway for amine C-H functionalization.

Keywords: C−H functionalization; azomethine ylides; density functional theory; heterocycles; redox-neutral.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Calculated activation and reaction free energies and transition states for the trapping of the azomethine ylides 4 and 11 [in kcal mol−1 and Å, M06-2X-D3/def2-QZVP/IEFPCM(toluene)//M06-L-D3/6-31+G(d,p)/IEFPCM].
Scheme 1
Scheme 1
Examples of redox-neutral amine aromatization.
Scheme 2
Scheme 2
Potential reaction pathways for pyrrole formation from pyrrolidine.
Scheme 3
Scheme 3
Support for azomethine ylide/enamine formation from pyrrolidine.
Scheme 4
Scheme 4
Evidence for simple and conjugated azomethine ylides.
Scheme 5
Scheme 5
Pyrrole formation and (3+2) cycloaddition.
Scheme 6
Scheme 6
Evidence for enamine intermediates.
Scheme 7
Scheme 7
Reactions of the enamine dimer with β-naphthol.
Scheme 8
Scheme 8
Pyrrole formation from enamine dimer.
Scheme 9
Scheme 9
Enamine dimer monomerization/β-functionalization.
Scheme 10
Scheme 10
Synthesis of other enamine dimers.
Scheme 11
Scheme 11
Reactions of enamine dimers with β-nitrostyrene.
Scheme 12
Scheme 12
β-Functionalization of azepane.
Scheme 13
Scheme 13
Calculated free energy profile for the lowest-energy pathway for the uncatalyzed reaction between benzaldehyde and pyrrolidine [in kcal mol−1; M06-2X-D3/def2-QZVP/IEFPCM(toluene)//M06-L-D3/6-31+G(d,p)/IEFPCM].
Scheme 14
Scheme 14
Calculated free energy profile and selected transition state structures for the lowest-energy pathway for the acetic-acid-catalyzed reaction between benzaldehyde and pyrrolidine [in kcal mol−1 and Å; M06-2X-D3/def2-QZVP/IEFPCM(toluene)//M06-L-D3/6-31+G(d,p)/IEFPCM].
Scheme 15
Scheme 15
Alternate pathway for the acetic-acid-catalyzed conversion of 10b to 15b [in kcal mol−1].
Scheme 16
Scheme 16
Alternate pathway for the acetic-acid-catalyzed conversion of 11 to 1 [in kcal mol−1].
Scheme 17
Scheme 17
Calculated free energy profile for the lowest-energy pathway for the acetic-acid-catalyzed reaction between 2,6-dichlorobenzaldehyde and pyrrolidine [in kcal mol−1; M06-2X-D3/def2-QZVP/IEFPCM(toluene)//M06-L-D3/6-31+G(d,p)/IEFPCM].
Scheme 18
Scheme 18
Calculated thermodynamics for the formation enamine intermediates [in kcal mol−1; M06-2X-D3/def2-QZVP/IEFPCM(toluene)//M06-L-D3/6-31+G(d, p)/IE FPCM].

References

    1. Pyridines from piperidine: Rügheimer L. Ber. 1891;24:2186. Rügheimer L. Ber. 1892;25:2421. Poirier RH, Morin RD, McKim AM, Bearse AE. J. Org. Chem. 1961;26:4275. Burrows EP, Hutton RF, Burrows WD. J. Org. Chem. 1962;27:316. Burrows WD, Burrows EP. J. Org. Chem. 1963;28:1180. Kameswari U, Pillai CN. Catal. Lett. 1996;38:53. Kameswari U. React. Kinet. Catal. Lett. 1996;59:135. Moura NMM, Nunez C, Santos SM, Faustino MAF, Cavaleiro JAS, Paz FAA, Neves M, Capelo JL, Lodeiro C. Chem. Eur. J. 2014;20:6684. Platonova AY, Seidel D. Tetrahedron Lett. 2015;56:3147.

    1. Isoquinolines from 1,2,3,4-tetrahydroisoquinoline: Dyke SF, Sainsbury M. Tetrahedron. 1967;23:3161. Sainsbury M, Dyke SF, Brown DW, Lugton WGD. Tetrahedron. 1968;24:427. Dannhardt G, Mayer KK, Obergrusberger I, Roelcke J. Arch. Pharm. (Weinheim, Ger.) 1986;319:977. Dannhardt G, Roelcke J. Chemiker Zeitung. 1991;115:229. Dannhardt G, Roelcke J. Arch. Pharm. (Weinheim, Ger.) 1992;325:671. See also references [1e] and [1i]

    1. Pyrroles from pyrrolines: Lee Y, Ling KQ, Lu X, Silverman RB, Shepard EM, Dooley DM, Sayre LM. J. Am. Chem. Soc. 2002;124:12135. Cook AG, Switek KA, Cutler KA, Witt AN. Lett. Org. Chem. 2004;1:1. Pahadi NK, Paley M, Jana R, Waetzig SR, Tunge JA. J. Am. Chem. Soc. 2009;131:16626. Xue X, Yu A, Cai Y, Cheng J-P. Org. Lett. 2011;13:6054. Fujiwara Y, Oda M, Shoji T, Abe T, Kuroda S. Heterocycles. 2012;85:1187.

    1. Pyrroles from pyrrolidine: Oda M, Fukuchi Y, Ito S, Thanh NC, Kuroda S. Tetrahedron Lett. 2007;48:9159. Polackova V, Veverkova E, Toma S, Bogdal D. Synth. Commun. 2009;39:1871.

    1. Indoles from indoline: Mao H, Xu R, Wan J, Jiang Z, Sun C, Pan Y. Chem. Eur. J. 2010;16:13352. Deb I, Das D, Seidel D. Org. Lett. 2011;13:812. Ramakumar K, Tunge JA. Chem. Commun. 2014;50:13056.

LinkOut - more resources