Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jan 15:317:367-373.
doi: 10.1016/j.bbr.2016.10.001. Epub 2016 Oct 3.

Levo-tetrahydropalmatine inhibits the acquisition of ketamine-induced conditioned place preference by regulating the expression of ERK and CREB phosphorylation in rats

Affiliations
Free article

Levo-tetrahydropalmatine inhibits the acquisition of ketamine-induced conditioned place preference by regulating the expression of ERK and CREB phosphorylation in rats

Yan Du et al. Behav Brain Res. .
Free article

Abstract

Levo-tetrahydropalmatine (l-THP) is an alkaloid purified from the Chinese herbs Corydalis and Stephania and has been used in many traditional Chinese herbal preparations for its sedative, analgesic and hypnotic properties. Previous studies demonstrated that l-THP has antagonistic activity on dopamine receptors; thus, it may have potential therapeutic effects on drug abuse. However, whether l-THP affects ketamine-induced conditioned place preference (CPP) remains unclear. Therefore, the present study was designed to evaluate the effects of l-THP on the rewarding behavior of ketamine through CPP. Results revealed that ketamine (5, 10 and 15mg/kg) induced CPP in rats. Furthermore, Ketamine (10mg/kg) promoted the phosphorylation of extracellular-regulated kinase (ERK) and cAMP responsive element binding protein (CREB) in the hippocampus (Hip) and caudate putamen (CPu), but not in the prefrontal cortex (PFc). l-THP (20mg/kg) co-administered with ketamine during conditioning inhibited the acquisition of ketamine-induced CPP in rats. Furthermore, l-THP (20mg/kg) prevented the enhanced phosphorylation of ERK and CREB in CPu and Hip. These results suggest that l-THP has potential therapeutic effects on ketamine-induced CPP. The underlying molecular mechanism may be related to its inhibitory effect on ERK and CREB phosphorylation in Hip and CPu. The present data supports the potential use of l-THP for the treatment of ketamine addiction.

Keywords: Conditioned place preference; Extracellular regulated protein kinase; Ketamine; Levo-tetrahydropalmatine; cAMP responsive element binding protein.

PubMed Disclaimer

MeSH terms

LinkOut - more resources