Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr;283(1):242-251.
doi: 10.1148/radiol.2016160355. Epub 2016 Oct 6.

Self-gated Non-Contrast-enhanced Functional Lung MR Imaging for Quantitative Ventilation Assessment in Patients with Cystic Fibrosis

Affiliations

Self-gated Non-Contrast-enhanced Functional Lung MR Imaging for Quantitative Ventilation Assessment in Patients with Cystic Fibrosis

Simon Veldhoen et al. Radiology. 2017 Apr.

Abstract

Purpose To assess the clinical feasibility of self-gated non-contrast-enhanced functional lung (SENCEFUL) magnetic resonance (MR) imaging for quantitative ventilation (QV) imaging in patients with cystic fibrosis (CF). Materials and Methods Twenty patients with CF and 20 matched healthy volunteers underwent functional 1.5-T lung MR imaging with the SENCEFUL imaging approach, in which a two-dimensional fast low-angle shot sequence is used with quasi-random sampling. The lungs were manually segmented on the ventilation-weighted images to obtain QV measurements, which were compared between groups. QV values of the patients were correlated with results of pulmonary function testing. Three radiologists rated the images for presence of ventilation deficits by means of visual inspection. Mann-Whitney U tests, receiver operating characteristic analyses, Spearman correlations, and Gwet agreement coefficient analyses were used for statistical analysis. Results QV of the entire lungs was lower for patients with CF than for control subjects (mean ± standard deviation, 0.09 mL/mL ± 0.03 vs 0.11 mL/mL ± 0.03, respectively; P = .007). QV ratios of upper to lower lung halves were lower in patients with CF than in control subjects (right, 0.84 ± 0.2 vs 1.16 ± 0.2, respectively [P < .001]; left, 0.88 ± 0.3 vs 1.11 ± 0.1, respectively [P = .017]). Accordingly, ventilation differences between the groups were larger in the upper halves (Δ = 0.04 mL/mL, P ≤ .001-.002). QV values of patients with CF correlated with forced vital capacity (r = 0.7; 95% confidence interval [CI]: 0.21, 0.91), residual volume (static hyperinflation, r = -0.8; 95% CI: -0.94, 0.42), and forced expiratory volume in 1 second (airway obstruction, r = 0.7; 95% CI: 0.21, 0.91). Disseminated small ventilation deficits were the most frequent involvement pattern, present in 40% of the functional maps in CF versus 8% in the control subjects (P < .001). Conclusion SENCEFUL MR imaging is feasible for QV assessment. Less QV, especially in upper lung parts, and correlation to vital capacity and to markers for hyperinflation and airway obstruction were found in patients with CF. © RSNA, 2016.

PubMed Disclaimer

Publication types

LinkOut - more resources