Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Oct-Dec;19(4):687-698.
doi: 10.4103/0971-9784.191578.

Cardiac surgery-associated acute kidney injury

Affiliations
Review

Cardiac surgery-associated acute kidney injury

Christian Ortega-Loubon et al. Ann Card Anaesth. 2016 Oct-Dec.

Abstract

Cardiac surgery-associated acute kidney injury (CSA-AKI) is a well-recognized complication resulting with the higher morbid-mortality after cardiac surgery. In its most severe form, it increases the odds ratio of operative mortality 3-8-fold, length of stay in the Intensive Care Unit and hospital, and costs of care. Early diagnosis is critical for an optimal treatment of this complication. Just as the identification and correction of preoperative risk factors, the use of prophylactic measures during and after surgery to optimize renal function is essential to improve postoperative morbidity and mortality of these patients. Cardiopulmonary bypass produces an increased in tubular damage markers. Their measurement may be the most sensitive means of early detection of AKI because serum creatinine changes occur 48 h to 7 days after the original insult. Tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 are most promising as an early diagnostic tool. However, the ideal noninvasive, specific, sensitive, reproducible biomarker for the detection of AKI within 24 h is still not found. This article provides a review of the different perspectives of the CSA-AKI, including pathogenesis, risk factors, diagnosis, biomarkers, classification, postoperative management, and treatment. We searched the electronic databases, MEDLINE, PubMed, EMBASE using search terms relevant including pathogenesis, risk factors, diagnosis, biomarkers, classification, postoperative management, and treatment, in order to provide an exhaustive review of the different perspectives of the CSA-AKI.

PubMed Disclaimer

References

    1. Gaffney AM, Sladen RN. Acute kidney injury in cardiac surgery. Curr Opin Anaesthesiol. 2015;28:50–9. - PubMed
    1. Josephs SA, Thakar CV. Perioperative risk assessment, prevention, and treatment of acute kidney injury. Int Anesthesiol Clin. 2009;47:89–105. - PubMed
    1. Mehta RH, Hafley GE, Gibson CM, Harrington RA, Peterson ED, Mack MJ, et al. Influence of preoperative renal dysfunction on one-year bypass graft patency and two-year outcomes in patients undergoing coronary artery bypass surgery. J Thorac Cardiovasc Surg. 2008;136:1149–55. - PubMed
    1. Brown JR, Cochran RP, MacKenzie TA, Furnary AP, Kunzelman KS, Ross CS, et al. Long-term survival after cardiac surgery is predicted by estimated glomerular filtration rate. Ann Thorac Surg. 2008;86:4–11. - PubMed
    1. Kangasniemi OP, Mahar MA, Rasinaho E, Satomaa A, Tiozzo V, Lepojärvi M, et al. Impact of estimated glomerular filtration rate on the 15-year outcome after coronary artery bypass surgery. Eur J Cardiothorac Surg. 2008;33:198–202. - PubMed

MeSH terms