Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Nov 7;55(21):11354-11361.
doi: 10.1021/acs.inorgchem.6b01894. Epub 2016 Oct 9.

Isomeric Sc2O@C78 Related by a Single-Step Stone-Wales Transformation: Key Links in an Unprecedented Fullerene Formation Pathway

Affiliations

Isomeric Sc2O@C78 Related by a Single-Step Stone-Wales Transformation: Key Links in an Unprecedented Fullerene Formation Pathway

Yajuan Hao et al. Inorg Chem. .

Abstract

It has been proposed that the fullerene formation mechanism involves either a top-down or bottom-up pathway. Despite different starting points, both mechanisms approve that particular fullerenes or metallofullerenes are formed through a consecutive stepwise process involving Stone-Wales transformations (SWTs) and C2 losses or additions. However, the formation pathway has seldomly been defined at the atomic level due to the missing-link fullerenes. Herein, we present the isolation and crystallographic characterization of two isomeric clusterfullerenes Sc2O@C2v(3)-C78 and Sc2O@D3h(5)-C78, which are closely related via a single-step Stone-Wales (SW) transformation. More importantly, these novel Sc2O@C78 isomers represent the key links in a well-defined formation pathway for the majority of solvent-extractable clusterfullerenes Sc2O@C2n (n = 38-41), providing molecular structural evidence for the less confirmed fullerene formation mechanism. Furthermore, DFT calculations reveal a SWT with a notably low activation barrier for these Sc2O@C78 isomers, which may rationalize the established fullerene formation pathway. Additional characterizations demonstrate that these Sc2O@C78 isomers feature different energy bandgaps and electrochemical behaviors, indicating the impact of SW defects on the energetic and electrochemical characteristics of metallofullerenes.

PubMed Disclaimer

LinkOut - more resources