Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Sep;119(3):511-22.

Radiobiology of ultrasoft X rays. III. Normal human fibroblasts and the significance of terminal track structure in cell inactivation

Affiliations
  • PMID: 2772142

Radiobiology of ultrasoft X rays. III. Normal human fibroblasts and the significance of terminal track structure in cell inactivation

M N Cornforth et al. Radiat Res. 1989 Sep.

Abstract

Ultrasoft characteristic X rays from carbon (0.28 keV) are severely attenuated as they pass through biological material, causing a nonuniform distribution of dose to cell nuclei. Complications of studying ultrasoft X rays can be minimized in this context by using cells with very thin cytoplasm and nuclei (e.g., less than the attenuation length of the X rays), and which exhibit a more nearly exponential dose response to cell killing, such as normal human fibroblasts compared with V79 cells. Using this cell system, we report the relative biological effectiveness (RBE) of A1-K and C-K X rays to be near unity. Previous studies of cell inactivation by characteristic carbon X rays gave RBEs of 3 to 4, supporting the idea that localized energy depositions from secondary electrons and primary track ends represent the principal mode of biological action for other low-LET radiations. In part, the reported high RBEs result from the use of mean dose to describe energy deposited within the cell nuclei by these poorly penetrating radiations. Implicit in the use of mean dose is that cellular damage varies linearly with dose within a critical target(s), an assumption that is of questionable validity for cells that exhibit pronounced curvilinear dose responses. The simplest interpretation of the present findings is that most energy depositions caused by track-end effects are not necessarily more damaging than the sparsely ionizing component.

PubMed Disclaimer

Publication types

LinkOut - more resources