Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Dec 12:193:9-39.
doi: 10.1039/c6fd00180g.

Emerging tools for studying single entity electrochemistry

Affiliations

Emerging tools for studying single entity electrochemistry

Yixian Wang et al. Faraday Discuss. .

Abstract

Electrochemistry studies charge transfer and related processes at various microscopic structures (atomic steps, islands, pits and kinks on electrodes), and mesoscopic materials (nanoparticles, nanowires, viruses, vesicles and cells) made by nature and humans, involving ions and molecules. The traditional approach measures averaged electrochemical quantities of a large ensemble of these individual entities, including the microstructures, mesoscopic materials, ions and molecules. There is a need to develop tools to study single entities because a real system is usually heterogeneous, e.g., containing nanoparticles with different sizes and shapes. Even in the case of "homogeneous" molecules, they bind to different microscopic structures of an electrode, assume different conformations and fluctuate over time, leading to heterogeneous reactions. Here we highlight some emerging tools for studying single entity electrochemistry, discuss their strengths and weaknesses, and provide personal views on the need for tools with new capabilities for further advancing single entity electrochemistry.

PubMed Disclaimer

Publication types

LinkOut - more resources