Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2016 Oct 12:6:35278.
doi: 10.1038/srep35278.

No Association of Coronary Artery Disease with X-Chromosomal Variants in Comprehensive International Meta-Analysis

Christina Loley  1   2 Maris Alver  3   4 Themistocles L Assimes  5 Andrew Bjonnes  6 Anuj Goel  7   8 Stefan Gustafsson  9 Jussi Hernesniemi  10   11 Jemma C Hopewell  12 Stavroula Kanoni  13 Marcus E Kleber  14 King Wai Lau  12 Yingchang Lu  15 Leo-Pekka Lyytikäinen  10   16 Christopher P Nelson  17   18 Majid Nikpay  19 Liming Qu  20 Elias Salfati  5 Markus Scholz  21   22 Taru Tukiainen  23   24 Christina Willenborg  2   25 Hong-Hee Won  26 Lingyao Zeng  27   28 Weihua Zhang  29   30 Sonia S Anand  31 Frank Beutner  22   32 Erwin P Bottinger  15 Robert Clarke  12 George Dedoussis  33 Ron Do  15   34   35   36 Tõnu Esko  3   37 Markku Eskola  11 Martin Farrall  7   8 Dominique Gauguier  38 Vilmantas Giedraitis  39 Christopher B Granger  40 Alistair S Hall  41 Anders Hamsten  42 Stanley L Hazen  43 Jie Huang  44 Mika Kähönen  45   46 Theodosios Kyriakou  7   8 Reijo Laaksonen  10   16   47 Lars Lind  48 Cecilia Lindgren  8   49 Patrik K E Magnusson  50 Eirini Marouli  13 Evelin Mihailov  3 Andrew P Morris  8   51 Kjell Nikus  11 Nancy Pedersen  50 Loukianos Rallidis  52 Veikko Salomaa  53 Svati H Shah  40 Alexandre F R Stewart  19 John R Thompson  54 Pierre A Zalloua  55   56 John C Chambers  30   31   57 Rory Collins  12 Erik Ingelsson  8   9 Carlos Iribarren  58 Pekka J Karhunen  10   59 Jaspal S Kooner  31   57   60 Terho Lehtimäki  10   16 Ruth J F Loos  15   61 Winfried März  14   62   63 Ruth McPherson  19 Andres Metspalu  3   4 Muredach P Reilly  64 Samuli Ripatti  58   65   66 Dharambir K Sanghera  67   68   69 Joachim Thiery  22   70 Hugh Watkins  7   8 Panos Deloukas  13   71   72 Sekar Kathiresan  6   24   37   73 Nilesh J Samani  17   18 Heribert Schunkert  28   29 Jeanette Erdmann  2   25 Inke R König  1   2
Affiliations
Meta-Analysis

No Association of Coronary Artery Disease with X-Chromosomal Variants in Comprehensive International Meta-Analysis

Christina Loley et al. Sci Rep. .

Abstract

In recent years, genome-wide association studies have identified 58 independent risk loci for coronary artery disease (CAD) on the autosome. However, due to the sex-specific data structure of the X chromosome, it has been excluded from most of these analyses. While females have 2 copies of chromosome X, males have only one. Also, one of the female X chromosomes may be inactivated. Therefore, special test statistics and quality control procedures are required. Thus, little is known about the role of X-chromosomal variants in CAD. To fill this gap, we conducted a comprehensive X-chromosome-wide meta-analysis including more than 43,000 CAD cases and 58,000 controls from 35 international study cohorts. For quality control, sex-specific filters were used to adequately take the special structure of X-chromosomal data into account. For single study analyses, several logistic regression models were calculated allowing for inactivation of one female X-chromosome, adjusting for sex and investigating interactions between sex and genetic variants. Then, meta-analyses including all 35 studies were conducted using random effects models. None of the investigated models revealed genome-wide significant associations for any variant. Although we analyzed the largest-to-date sample, currently available methods were not able to detect any associations of X-chromosomal variants with CAD.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Chromosome-wide association results.
The statistical model assumes no inactivation and no SNP*sex interaction. Shown are logarithmized random effects p-values of all 184,673 quality controlled SNPs in order of physical position in mega base pairs (mbp).
Figure 2
Figure 2. Estimated power.
The power to detect an effect was estimated in dependence of the odds ratio (OR) and the effect allele frequency (EAF) using software Quanto (version 1.2.4 from May 2009). Parameters used for simulation: Binary (disease) phenotype, significance level α = 5·10−8, disease prevalence kP = 0.1, log-additive genetic model, no gene-environment interaction. (A) Effective Ncases = 27,640, 1.5817 effective controls per effective case (corresponding to 43,718 effective controls), (B) Female Ncases = 12,160, 2.3968 female controls per female case (corresponding to 29,145 female controls).

References

    1. CARDIoGRAMplusC4D-Consortium. A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 47, 1121–1130 (2015). - PMC - PubMed
    1. König I. R., Loley C., Erdmann J. & Ziegler A. How to include chromosome X in your genome-wide association study. Genet. Epidemiol. 38, 97–103 (2014). - PubMed
    1. Solimene M. C. Coronary heart disease in women: a challenge for the 21st century. Clinics (Sao Paulo) 65, 99–106 (2010). - PMC - PubMed
    1. Devlin B. & Roeder K. Genomic control for association studies. Biometrics 55, 997–1004 (1999). - PubMed
    1. Hindorff L. et al. A Catalog of Published Genome-Wide Association Studies www.genome.gov/gwastudies (2014).

Publication types