Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Nov 2;138(43):14202-14205.
doi: 10.1021/jacs.6b08900. Epub 2016 Oct 19.

Monodisperse Formamidinium Lead Bromide Nanocrystals with Bright and Stable Green Photoluminescence

Affiliations

Monodisperse Formamidinium Lead Bromide Nanocrystals with Bright and Stable Green Photoluminescence

Loredana Protesescu et al. J Am Chem Soc. .

Abstract

Bright green emitters with adjustable photoluminescence (PL) maxima in the range of 530-535 nm and full-width at half-maxima (fwhm) of <25 nm are particularly desirable for applications in television displays and related technologies. Toward this goal, we have developed a facile synthesis of highly monodisperse, cubic-shaped formamidinium lead bromide nanocrystals (FAPbBr3 NCs) with perovskite crystal structure, tunable PL in the range of 470-540 nm by adjusting the nanocrystal size (5-12 nm), high quantum yield (QY) of up to 85% and PL fwhm of <22 nm. High QYs are also retained in films of FAPbBr3 NCs. In addition, these films exhibit low thresholds of 14 ± 2 μJ cm-2 for amplified spontaneous emission.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
(a) Photograph of colloidal FAPbBr3 NCs in toluene solution under a UV lamp (λ = 365 nm), (b) absorption and PL spectra of ∼12 nm FAPbBr3 NCs with a PL maximum at 530 nm, fwhm of 22 nm and QY of 85%, (c) PL spectra for FAPbBr3 NCs showing the red shift of the emission peak with increasing size from 5 to >50 nm, (d,e) TEM images of ∼12 nm FAPbBr3 NCs.
Figure 2
Figure 2
Synchrotron XRD pattern (λ = 0.565 666 Å) and its Rietveld fit for ∼12 nm FAPbBr3 NCs, containing an impurity of NH4Pb2Br5 (∼6 wt %). Black, experimental data; green, calculated total trace that combines Pm3m model of FAPbBr3 and the I4/mcm model of NH4Pb2Br5; red, difference plot; black and magenta vertical bars indicate Bragg peak locations for FAPbBr3 and NH4Pb2Br5, respectively. Stars highlight minor peaks of an unknown contaminant. The inset illustrates the crystal structure of FAPbBr3 and disorder of Br-anions.
Figure 3
Figure 3
(a) Photograph of highly luminescent FAPbBr3 NC films (bare and embedded in PMMA), under a UV lamp (λ = 365 nm). (b) PL spectra of ∼12 nm FAPbBr3 NCs in colloidal solution and in films. (c) Time-resolved (TR) PL traces for a solution and films of FAPbBr3 NCs. (d) PL QYs of FAPbBr3 NCs in various states: solution, bare films and polymer- (PMMA-) encapsulated films. All samples were prepared and tested in air.
Figure 4
Figure 4
Amplified spontaneous emission (ASE) from a film of ∼12 nm FAPbBr3 NCs. Inset: threshold behavior for the intensity of the ASE band.

References

    1. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
    1. Protesescu L.; Yakunin S.; Bodnarchuk M. I.; Krieg F.; Caputo R.; Hendon C. H.; Yang R. X.; Walsh A.; Kovalenko M. V. Nano Lett. 2015, 15, 3692–3696. 10.1021/nl5048779. - DOI - PMC - PubMed
    1. Nedelcu G.; Protesescu L.; Yakunin S.; Bodnarchuk M. I.; Grotevent M. J.; Kovalenko M. V. Nano Lett. 2015, 15, 5635–5640. 10.1021/acs.nanolett.5b02404. - DOI - PMC - PubMed
    2. Akkerman Q. A.; D’Innocenzo V.; Accornero S.; Scarpellini A.; Petrozza A.; Prato M.; Manna L. J. Am. Chem. Soc. 2015, 137, 10276–10281. 10.1021/jacs.5b05602. - DOI - PMC - PubMed
    3. Zhang D.; Yang Y.; Bekenstein Y.; Yu Y.; Gibson N. A.; Wong A. B.; Eaton S. W.; Kornienko N.; Kong Q.; Lai M.; Alivisatos A. P.; Leone S. R.; Yang P. J. Am. Chem. Soc. 2016, 138, 7236–7239. 10.1021/jacs.6b03134. - DOI - PubMed
    4. Bekenstein Y.; Koscher B. A.; Eaton S. W.; Yang P.; Alivisatos A. P. J. Am. Chem. Soc. 2015, 137, 16008–16011. 10.1021/jacs.5b11199. - DOI - PubMed
    5. Akkerman Q. A.; Motti S. G.; Srimath Kandada A. R.; Mosconi E.; D’Innocenzo V.; Bertoni G.; Marras S.; Kamino B. A.; Miranda L.; De Angelis F.; Petrozza A.; Prato M.; Manna L. J. Am. Chem. Soc. 2016, 138, 1010–1016. 10.1021/jacs.5b12124. - DOI - PMC - PubMed
    6. Shamsi J.; Dang Z.; Bianchini P.; Canale C.; Stasio F. D.; Brescia R.; Prato M.; Manna L. J. Am. Chem. Soc. 2016, 138, 7240–7243. 10.1021/jacs.6b03166. - DOI - PMC - PubMed
    7. Lignos I.; Stavrakis S.; Nedelcu G.; Protesescu L.; deMello A. J.; Kovalenko M. V. Nano Lett. 2016, 16, 1869–1877. 10.1021/acs.nanolett.5b04981. - DOI - PubMed
    1. De Roo J.; Ibáñez M.; Geiregat P.; Nedelcu G.; Walravens W.; Maes J.; Martins J. C.; Van Driessche I.; Kovalenko M. V.; Hens Z. ACS Nano 2016, 10, 2071–2081. 10.1021/acsnano.5b06295. - DOI - PubMed
    2. Pan J.; Quan L. N.; Zhao Y.; Peng W.; Murali B.; Sarmah S. P.; Yuan M.; Sinatra L.; Alyami N. M.; Liu J.; Yassitepe E.; Yang Z.; Voznyy O.; Comin R.; Hedhili M. N.; Mohammed O. F.; Lu Z. H.; Kim D. H.; Sargent E. H.; Bakr O. M. Adv. Mater. 2016, 28, 8718.10.1002/adma.201600784. - DOI - PubMed
    1. Yakunin S.; Protesescu L.; Krieg F.; Bodnarchuk M. I.; Nedelcu G.; Humer M.; De Luca G.; Fiebig M.; Heiss W.; Kovalenko M. V. Nat. Commun. 2015, 6, 8056.10.1038/ncomms9056. - DOI - PMC - PubMed
    2. Wang Y.; Li X.; Song J. D.; Xiao L.; Zeng H.; Sun H. Adv. Mater. 2015, 27, 7101–7108. 10.1002/adma.201503573. - DOI - PubMed
    3. Pan J.; Sarmah S. P.; Murali B.; Dursun I.; Peng W.; Parida M. R.; Liu J.; Sinatra L.; Alyami N.; Zhao C.; Alarousu E.; Ng T. K.; Ooi B. S.; Bakr O. M.; Mohammed O. F. J. Phys. Chem. Lett. 2015, 6, 5027–5033. 10.1021/acs.jpclett.5b02460. - DOI - PubMed

Publication types