Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Oct;18(10):650-656.
doi: 10.1089/dia.2016.0202.

Successful Performance of Laboratory Investigations with Blood Glucose Meters Employing a Dynamic Electrochemistry-Based Correction Algorithm Is Dependent on Careful Sample Handling

Affiliations

Successful Performance of Laboratory Investigations with Blood Glucose Meters Employing a Dynamic Electrochemistry-Based Correction Algorithm Is Dependent on Careful Sample Handling

Filiz Demircik et al. Diabetes Technol Ther. 2016 Oct.

Abstract

Background: Devices employing electrochemistry-based correction algorithms (EBCAs) are optimized for patient use and require special handling procedures when tested in the laboratory. This study investigated the impact of sample handling on the results of an accuracy and hematocrit interference test performed with BG*Star, iBG*Star; OneTouch Verio Pro and Accu-Chek Aviva versus YSI Stat 2300.

Methods: Venous heparinized whole blood was manipulated to contain three different blood glucose concentrations (64-74, 147-163, and 313-335 mg/dL) and three different hematocrit levels (30%, 45%, and 60%). Sample preparation was done by either a very EBCA-experienced laboratory testing team (A), a group experienced with other meters but not EBCAs (B), or a team inexperienced with meter testing (C). Team A ensured physiological pO2 and specific sample handling requirements, whereas teams B and C did not consider pO2. Each sample was tested four times with each device. In a separate experiment, a different group similar to group B performed the experiment before (D1) and after (D2) appropriate sample handling training.

Results: Mean absolute deviation from YSI was calculated as a metrix for all groups and devices. Mean absolute relative difference was 4.3% with team A (B: 9.2%, C: 5.2%). Team B had much higher readings and team C produced 100% of "sample composition" errors with high hematocrit levels. In a separate experiment, group D showed a result similar to group B before the training and improved significantly when considering the sample handling requirements (D1: 9.4%, D2: 4.5%, P < 0.05).

Conclusions: Laboratory performance testing of EBCA devices should only be performed by trained staff considering specific sample handling requirements. The results suggest that healthcare centers should evaluate EBCA-based devices with capillary blood from patients in accordance with the instructions for use to achieve reliable results.

PubMed Disclaimer

Publication types

LinkOut - more resources