Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Nov 9;8(44):30430-30439.
doi: 10.1021/acsami.6b09437. Epub 2016 Oct 27.

Staphylococcal Adhesion, Detachment and Transmission on Nanopillared Si Surfaces

Affiliations

Staphylococcal Adhesion, Detachment and Transmission on Nanopillared Si Surfaces

Ferdi Hizal et al. ACS Appl Mater Interfaces. .

Abstract

Nanostructured surfaces are extensively considered with respect to their potential impact on bacterial adhesion from aqueous suspensions or air, but in real-life bacteria are often transmitted between surfaces. Mechanistically, transmission involves detachment of adhering bacteria from a donor and adhesion to a receiver surface, controlled by the relative values of the adhesion forces exerted by both surfaces. We here relate staphylococcal adhesion, detachment and transmission to, from, and between smooth and nanopillared-Si surfaces with staphylococcal adhesion forces. Nanopillared-Si surfaces were prepared with pillar-to-pillar distances of 200, 400, and 800 nm. On smooth surfaces, staphylococcal adhesion forces, measured using bacterial-probe Atomic-Force-Microscopy, amounted to 4.4-6.8 and 1.8-2.1 nN (depending on the AFM-loading force) for extracellular-polymeric-substances (EPS) producing and non-EPS producing strains, respectively. Accordingly the EPS producing strain adhered in higher numbers than the non-EPS producing strain. Fractional adhesion forces on nanopillared-Si surfaces relative to the smooth surface ranged from 0.30 to 0.95, depending on AFM-loading force, strain and pillar-to-pillar distance. However, for each strain, the number of adhering bacteria remained similar on all nanopillared surfaces. Detachment of adhering staphylococci decreased significantly with increasing adhesion forces, while staphylococcal transmission to a receiver surface also decreased with increasing adhesion force exerted by the donor. In addition, the strain with ability to produce EPS was killed in high percentages and induced to produce EPS during transmission on nanopillared-Si surfaces, presumably by high local cell-wall stresses. This must be accounted for in applications of nanostructured surfaces: whereas killing may be favorable, EPS production may reduce antimicrobial efficacy.

Keywords: adhesion force; atomic force microscopy; bacterial adhesion; bacterial detachment; bacterial transmission; nanostructured surfaces; pressure-induced EPS; staphylococci.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources