N-terminal engineering of glutamyl-tRNA reductase with positive charge arginine to increase 5-aminolevulinic acid biosynthesis
- PMID: 27754792
- PMCID: PMC5553337
- DOI: 10.1080/21655979.2016.1230572
N-terminal engineering of glutamyl-tRNA reductase with positive charge arginine to increase 5-aminolevulinic acid biosynthesis
Abstract
Five-Aminolevulinic acid (ALA), the universal precursor of all tetrapyrroles, has various applications in medicine and agriculture industries. Glutamyl-tRNA reductase (GluTR) as the first key enzyme of C5 pathway is feedback regulated by heme, and its N-terminus plays a critical role on its stability control. Here, the GluTR N-terminus was engineered by inserting different numbers of positively charged lysine and arginine residues. The results confirmed that insertion of lysine or arginine residues (especially one arginine residue) behind Thr2 significantly increased the stability of GluTR. By co-expression of the GluTR variant R1 and the glutamate-1-semialdehyde aminotransferase, ALA production was improved 1.76-fold to 1220 mg/L. The GluTR variant R1 constructed here could be used for engineering the C5 pathway to enhance ALA and other products.
Keywords: Five-aminolevulinic acid; N-terminal engineering; escherichia coli; glutamyl-tRNA reductase; heme.
Figures





Erratum for
- Addendum to: Zhang J, Kang Z, Ding W, Chen J, Du G. Integrated optimization of the in vivo heme biosynthesis pathway and the in vitro iron concentration for 5-aminolevulinate production. Applied Biochemistry and Biotechnology 2016; 178(6):1252–1262.
Similar articles
-
An Arabidopsis GluTR binding protein mediates spatial separation of 5-aminolevulinic acid synthesis in chloroplasts.Plant Cell. 2011 Dec;23(12):4476-91. doi: 10.1105/tpc.111.086421. Epub 2011 Dec 16. Plant Cell. 2011. PMID: 22180625 Free PMC article.
-
5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway.Enzyme Microb Technol. 2015 Dec;81:1-7. doi: 10.1016/j.enzmictec.2015.07.004. Epub 2015 Jul 26. Enzyme Microb Technol. 2015. PMID: 26453466
-
Novel inhibitors of glutamyl-tRNA(Glu) reductase identified through cell-based screening of the heme/chlorophyll biosynthetic pathway.Arch Biochem Biophys. 1999 Dec 15;372(2):230-7. doi: 10.1006/abbi.1999.1505. Arch Biochem Biophys. 1999. PMID: 10600160
-
Glutamyl-transfer RNA: a precursor of heme and chlorophyll biosynthesis.Trends Biochem Sci. 1992 Jun;17(6):215-8. doi: 10.1016/0968-0004(92)90380-r. Trends Biochem Sci. 1992. PMID: 1502723 Review.
-
Transfer RNA and the formation of the heme and chlorophyll precursor, 5-aminolevulinic acid.Biofactors. 1990 Oct;2(4):227-35. Biofactors. 1990. PMID: 2282139 Review.
Cited by
-
Natural 5-Aminolevulinic Acid: Sources, Biosynthesis, Detection and Applications.Front Bioeng Biotechnol. 2022 Feb 25;10:841443. doi: 10.3389/fbioe.2022.841443. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 35284403 Free PMC article. Review.
-
5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli.J Ind Microbiol Biotechnol. 2017 Aug;44(8):1127-1135. doi: 10.1007/s10295-017-1940-1. Epub 2017 Apr 5. J Ind Microbiol Biotechnol. 2017. PMID: 28382525
-
Potential involvement of the 18 kDa translocator protein and reactive oxygen species in apoptosis of THP-1 macrophages induced by sonodynamic therapy.PLoS One. 2018 May 10;13(5):e0196541. doi: 10.1371/journal.pone.0196541. eCollection 2018. PLoS One. 2018. PMID: 29746502 Free PMC article.
-
Downregulating of hemB via synthetic antisense RNAs for improving 5-aminolevulinic acid production in Escherichia coli.3 Biotech. 2021 May;11(5):230. doi: 10.1007/s13205-021-02733-8. Epub 2021 Apr 21. 3 Biotech. 2021. PMID: 33968574 Free PMC article.
-
Recent advances in production of 5-aminolevulinic acid using biological strategies.World J Microbiol Biotechnol. 2017 Oct 16;33(11):200. doi: 10.1007/s11274-017-2366-7. World J Microbiol Biotechnol. 2017. PMID: 29038905 Review.
References
-
- Kang Z, Zhang J, Zhou J, Qi Q, Du G, Chen J. Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnol Adv 2012; 30:1533-42; PMID:22537876; https://doi.org/10.1016/j.biotechadv.2012.04.003 - DOI - PubMed
-
- Bhowmick R, Girotti AW. Cytoprotective induction of nitric oxide synthase in a cellular model of 5-aminolevulinic acid-based photodynamic therapy. Free Radic Biol Med 2010; 48:1296-301; PMID:20138143; https://doi.org/10.1016/j.freeradbiomed.2010.01.040 - DOI - PMC - PubMed
-
- Sakamoto FH, Torezan L, Anderson RR. Photodynamic therapy for acne vulgaris: a critical review from basics to clinical practice: part II. Understanding parameters for acne treatment with photodynamic therapy. J Am Acad Dermatol 2010; 63:195-211; PMID:20633797; https://doi.org/10.1016/j.jaad.2009.09.057 - DOI - PubMed
-
- Sasikala C, Ramana CV, Rao PR. Five-Aminolevulinic acid: a potential herbicide/insecticide from microorganisms. Biotechnol Progress 1994; 10:451-9; https://doi.org/10.1021/bp00029a001 - DOI
-
- Watanabe K, Tanaka T, Hotta Y, Kuramochi H, Takeuchi Y. Improving salt tolerance of cotton seedlings with 5-aminolevulinic acid. Plant Growth Regul 2000; 32:97-101; https://doi.org/10.1023/A:1006369404273 - DOI
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous