Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Feb;28(1):48-62.
doi: 10.1097/FBP.0000000000000267.

LASSBio-1422: a new molecular scaffold with efficacy in animal models of schizophrenia and disorders of attention and cognition

Affiliations

LASSBio-1422: a new molecular scaffold with efficacy in animal models of schizophrenia and disorders of attention and cognition

Andresa H Betti et al. Behav Pharmacol. 2017 Feb.

Abstract

Aiming to identify new antipsychotic lead-compounds, our group has been working on the design and synthesis of new N-phenylpiperazine derivatives. Here, we characterized LASSBio-1422 as a pharmacological prototype of this chemical series. Adult male Wistar rats and CF1 mice were used for in-vitro and in-vivo assays, respectively. LASSBio-1422 [1 and 5 mg/kg, postoperatively (p.o.)] inhibited apomorphine-induced climbing as well as ketamine-induced hyperlocomotion (1 and 5 mg/kg, p.o.), animal models predictive of efficacy on positive symptoms. Furthermore, LASSBio-1422 (5 mg/kg, p.o.) prevented the prepulse impairment induced by apomorphine, (±)-2,5-dimethoxy-4-iodoamphetamine, and ketamine, as well as the memory impairment induced by ketamine in the novel object-recognition task at the acquisition, consolidation, and retrieval phases of memory formation. Potential extrapyramidal side-effects and sedation were assessed by catatonia, rota-rod, locomotion, and barbiturate sleeping time, and LASSBio-1422 (15 mg/kg, p.o.) did not affect any of the parameters observed. Binding assays showed that LASSBio-1422 has a binding profile different from the known atypical antipsychotic drugs: it does not bind to AMPA, kainate, N-methyl-D-aspartate, glicine, and mGluR2 receptors and has low or negligible affinity for D1, D2, and 5-HT2A/C receptors, but high affinity for D4 receptors (Ki=0.076 µmol/l) and, to a lesser extent, for 5-HT1A receptors (Ki=0.493 µmol/l). The antagonist action of LASSBio-1422 at D4 receptors was assessed through the classical GTP-shift assay. In conclusion, LASSBio-1422 is effective in rodent models of positive and cognitive symptoms of schizophrenia and its ability to bind to D4 and 5-HT1A receptors may at least in part explain its effects in these animal models.

PubMed Disclaimer

Publication types

MeSH terms