Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Oct 18;11(10):e0164621.
doi: 10.1371/journal.pone.0164621. eCollection 2016.

Assessing the Impact of Manure Application in Commercial Swine Farms on the Transmission of Antimicrobial Resistant Salmonella in the Environment

Affiliations

Assessing the Impact of Manure Application in Commercial Swine Farms on the Transmission of Antimicrobial Resistant Salmonella in the Environment

Suchawan Pornsukarom et al. PLoS One. .

Abstract

Land application of swine manure in commercial hog farms is an integral part of their waste management system which recycles the nutrients back to the soil. However, manure application can lead to the dissemination of bacterial pathogens in the environment and pose a serious public health threat. The aim of this study was to determine the dissemination of antimicrobial resistant Salmonella in the environment due to manure application in commercial swine farms in North Carolina (n = 6) and Iowa (n = 7), two leading pork producing states in the US. We collected manure and soil samples twice on day 0 (before and after manure application) from four distinct plots of lands (5 soil samples/plot) located at 20 feet away from each other in the field. Subsequent soil samples were collected again on days 7, 14, 21 from the same plots. A total of 1,300 soil samples (NC = 600; IA = 700) and 130 manure samples (NC = 60; IA = 70) were collected and analyzed in this study. The overall Salmonella prevalence was 13.22% (189/1,430), represented by 10.69% and 38.46% prevalence in soil and manure, respectively. The prevalence in NC (25.45%) was significantly higher than in IA (2.73%) (P<0.001) and a consistent decrease in Salmonella prevalence was detected from Day 0-Day 21 in all the farms that tested positive. Salmonella serotypes detected in NC were not detected in IA, thereby highlighting serotype association based on manure storage and soil application method used in the two regions. Antimicrobial susceptibility testing was done by the broth microdilution method to a panel of 15 antimicrobial drugs. A high frequency of isolates (58.73%) were multidrug resistant (resistance to three or more class of antimicrobials) and the most frequent resistance was detected against streptomycin (88.36%), sulfisoxazole (67.2%), and tetracycline (57.67%). Genotypic characterization by pulse field gel electrophoresis revealed clonally related Salmonella in both manure and soil at multiple time points in the positive farms. Our study highlights the potential role of swine manure application in the dissemination and persistence of antimicrobial resistant Salmonella in the environment.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Salmonella prevalence among North Carolina samples (NCF 1-NCF 6) and Iowa samples (IAF 6) at different time points.
Fig 2
Fig 2. Phylogenetic analysis representing PFGE-XbaI with antimicrobial resistant patterns of Salmonella Senftenberg from NCF 4 at 90% cut-off genotypic similarity (Cluster A).
Fig 3
Fig 3. Phylogenetic analysis representing PFGE-XbaI with antimicrobial resistant patterns of Salmonella Altona from NCF 1 at 90% cut-off genotypic similarity (Cluster B).
Fig 4
Fig 4. Phylogenetic analysis representing PFGE-XbaI with antimicrobial resistant patterns of Salmonella Rissen from NCF 3&6 at 90% cut-off genotypic similarity (Cluster F).

Similar articles

Cited by

References

    1. US Environmental Protection Agency. Literature review of contaminants in livestock and poultry manure and implications for water quality. 2013. Available: http://water.epagov/scitech/cec/upload/Literature-Review-of-Contaminants....
    1. USDA. FY-2005 Annual Report Manure and Byproduct Utilization, National Program 206. 2008. Available: http://www.ars.usda.gov/research/programs/programs.htm?np_code=206&docid...
    1. Erickson MC, Liao J, Ma L, Jiang X, Doyle MP. Thermal and Nonthermal Factors Affecting Survival of Salmonella and Listeria monocytogenes in Animal Manure–Based Compost Mixtures. Journal of Food Protection. 2014; 77(9): 1512–1518. 10.4315/0362-028X.JFP-14-111 - DOI - PubMed
    1. Millner P, Ingram D, Mulbry W, Arikan OA. Pathogen reduction in minimally managed composting of bovine manure. Waste Management. 2014; 34 (11): 1992–1999. 10.1016/j.wasman.2014.07.021 - DOI - PubMed
    1. He LY, Ying GG, Liu YS, Su HC, Chen J, Liu SS, et al. Discharge of swine wastes risks water quality and food safety: Antibiotics and antibiotic resistance genes from swine sources to the receiving environments. Environment international. 2016; 92: 210–219. 10.1016/j.envint.2016.03.023 - DOI - PubMed

MeSH terms