Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Sep 18;984(3):262-6.
doi: 10.1016/0005-2736(89)90291-5.

Membrane potential dependence of Fe(III) uptake by mouse duodenum

Affiliations

Membrane potential dependence of Fe(III) uptake by mouse duodenum

K B Raja et al. Biochim Biophys Acta. .

Abstract

Intestinal iron uptake by mouse duodenal fragments is inhibited in the absence of oxygen and glucose from the incubation medium and by a variety of metabolic inhibitors. The mechanism of energy coupling to iron uptake is, however, unclear. In vitro experiments using duodenal fragments showed Fe3+ uptake to be markedly inhibited, in a reversible fashion, by the replacement of incubation medium Na+ by K+. Addition of phloridzin to the medium failed to affect iron uptake, suggesting that the above effect was not a consequence of reduced glucose uptake. Substitution of Na+ by Rb+ also potently reduced duodenal iron uptake. Replacement of medium NaCl by either mannitol or choline chloride had no significant effect on Fe3+ uptake, thus excluding the possibility of the Fe3+ uptake process being Na+-dependent. Similar observations were made with duodenal fragments from animals with enhanced Fe3+ absorption, due to chronic hypoxia. Valinomycin (1-5 microM) increased the uptake of both glucose and Fe3+. Higher concentrations (22.5 microM) of the ionophore were inhibitory. In vivo studies (tied-off segments) using Rb+-containing medium confirmed the inhibitory effects of univalent cations on Fe3+ absorption. Enhanced absorption of Fe3+ was also demonstrable in vivo, with low concentrations of valinomycin and nigericin added to the luminal medium. These observations suggest that the Fe3+ uptake process may be dependent on the brush-border membrane potential.

PubMed Disclaimer

LinkOut - more resources