Colder environments did not select for a faster metabolism during experimental evolution of Drosophila melanogaster
- PMID: 27757954
- DOI: 10.1111/evo.13094
Colder environments did not select for a faster metabolism during experimental evolution of Drosophila melanogaster
Abstract
The effect of temperature on the evolution of metabolism has been the subject of debate for a century; however, no consistent patterns have emerged from comparisons of metabolic rate within and among species living at different temperatures. We used experimental evolution to determine how metabolism evolves in populations of Drosophila melanogaster exposed to one of three selective treatments: a constant 16°C, a constant 25°C, or temporal fluctuations between 16 and 25°C. We tested August Krogh's controversial hypothesis that colder environments select for a faster metabolism. Given that colder environments also experience greater seasonality, we also tested the hypothesis that temporal variation in temperature may be the factor that selects for a faster metabolism. We measured the metabolic rate of flies from each selective treatment at 16, 20.5, and 25°C. Although metabolism was faster at higher temperatures, flies from the selective treatments had similar metabolic rates at each measurement temperature. Based on variation among genotypes within populations, heritable variation in metabolism was likely sufficient for adaptation to occur. We conclude that colder or seasonal environments do not necessarily select for a faster metabolism. Rather, other factors besides temperature likely contribute to patterns of metabolic rate over thermal clines in nature.
Keywords: Drosophila; Krogh's rule; experimental evolution; metabolic cold adaptation; metabolic rate; temperature.
© 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Comment in
-
Digest: Live fast or slow? Temperature does not impose selection on metabolic rate.Evolution. 2017 Jan;71(1):191-192. doi: 10.1111/evo.13119. Epub 2016 Nov 18. Evolution. 2017. PMID: 27859037 No abstract available.
Publication types
MeSH terms
Associated data
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases