Changes in endoplasmic reticulum during spermiogenesis in the mouse
- PMID: 2776183
- DOI: 10.1007/BF00261831
Changes in endoplasmic reticulum during spermiogenesis in the mouse
Abstract
Changes in the endoplasmic reticulum of mouse spermatids during spermiogenesis were examined by scanning electron microscopy, applying the OsO4-DMSO-OsO4 method, which permits 3-dimensional observation of cell organelles. At the same time, the endoplasmic reticulum was stained selectively by the Ur-Pb-Cu method, and 0.5 micron-thick sections were prepared for observation by transmission electron microscopy. The results demonstrated stereoscopically the mode of disappearance of the endoplasmic reticulum. In spermatids of the early maturation phase, the endoplasmic reticulum was of uniform diameter, branched and anastomosed, forming a complicated three-dimensional network throughout the cytoplasm. A two-dimensional net was also noted to have formed just beneath the plasma membrane and about Sertoli cell processes invaginating the spermatid cytoplasm. As spermiogenesis progressed, the spread-out endoplasmic reticulum gradually aggregated to form a condensed, glomerulus-like structure consisting of a very thin endoplasmic reticulum connected to the surrounding endoplasmic reticulum. This structure corresponds to the so-called "radial body". Thus, the endoplasmic reticulum may aggregate, condense, be transformed into a radial body, and be removed from the cytoplasm. The two-dimensional endoplasmic reticulum-net, just beneath the plasma membrane and surrounding processes of Sertoli cells, disappeared in spaces where the three-dimensional endoplasmic reticulum network was scarce. Both the two-dimensional endoplasmic reticulum-net structure and the three-dimensional endoplasmic reticulum network disappeared at the same time, indicating that they may be closely related.
References
MeSH terms
Substances
LinkOut - more resources
Research Materials