Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989;50(2-3):116-20.
doi: 10.1159/000132736.

Molecular cytological differentiation of active from inactive X domains in interphase: implications for X chromosome inactivation

Affiliations

Molecular cytological differentiation of active from inactive X domains in interphase: implications for X chromosome inactivation

K A Dyer et al. Cytogenet Cell Genet. 1989.

Abstract

A fluorescence in situ hybridization method using a biotinylated DNA probe specific for the centromeric region of the human X chromosome was used to differentiate the genetically active from the inactive X in interphase cells. With this technique, we were able to interpret both the relative position and the degree of condensation of the X chromosomes within the nucleus. We first established the specificity of fluorescence labelling of the hybridized probe by comparing its location and appearance (either dense or diffuse) when associated with a sex chromatin body (SCB) in early passage normal human female fibroblasts. In these cells, where the presence of inactive X chromatin was verified by identification of a 4',6-diamidino-2-phenyl indole (DAPI)-positive SCB in 85% of the cells examined, the X chromatin fluorescence was always associated with the SCB. The signal was dense in structure in 98% and peripheral in location in 80% of the nuclei. A second type of signal, diffuse in form, was observed in 85% of the nuclei and presumably represents the location of the active X chromosome. It was located peripherally or centrally with equal frequency and was not associated with any identifiable nuclear component. This diffuse signal was the major type associated with human male fibroblasts. In rodent x human hybrid cells containing a human inactive X, the fluorescent signal was associated with an SCB-like structure in only 13% of the nuclei; it was dense in 66% of the nuclei and equally peripheral or central in location. This indicates an alteration in the interphase structure of the human inactive X chromosome in hybrid cells which may explain its known instability with respect to genetic activity in such systems.

PubMed Disclaimer

Publication types