Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Oct 17;17(Suppl 9):757.
doi: 10.1186/s12864-016-3091-6.

Copy number variations in Saudi family with intellectual disability and epilepsy

Affiliations

Copy number variations in Saudi family with intellectual disability and epilepsy

Muhammad I Naseer et al. BMC Genomics. .

Abstract

Background: Epilepsy is genetically complex but common brain disorder of the world affecting millions of people with almost of all age groups. Novel Copy number variations (CNVs) are considered as important reason for the numerous neurodevelopmental disorders along with intellectual disability and epilepsy. DNA array based studies contribute to explain a more severe clinical presentation of the disease but interoperation of many detected CNVs are still challenging.

Results: In order to study novel CNVs with epilepsy related genes in Saudi family with six affected and two normal individuals with several forms of epileptic seizures, intellectual disability (ID), and minor dysmorphism, we performed the high density whole genome Agilent sure print G3 Hmn CGH 2x 400 K array-CGH chips analysis. Our results showed de novo deletions, duplications and deletion plus duplication on differential chromosomal regions in the affected individuals that were not shown in the normal fathe and normal kids by using Agilent CytoGenomics 3.0.6.6 softwear. Copy number gain were observed in the chromosome 1, 16 and 22 with LCE3C, HPR, GSTT2, GSTTP2, DDT and DDTL genes respectively whereas the deletions observed in the chromosomal regions 8p23-p21 (4303127-4337759) and the potential gene in this region is CSMD1 (OMIM: 612279). Moreover, the array CGH results deletions and duplication were also validated by using primer design of deleted regions utilizing the flanked SNPs using simple PCR and also by using quantitative real time PCR.

Conclusions: We found some of the de novo deletions and duplication in our study in Saudi family with intellectual disability and epilepsy. Our results suggest that array-CGH should be used as a first line of genetic test for epilepsy except there is a strong indication for a monogenic syndrome. The advanced high through put array-CGH technique used in this study aim to collect the data base and to identify new mechanisms describing epileptic disorder, may help to improve the clinical management of individual cases in decreasing the burden of epilepsy in Saudi Arabia.

Keywords: Array-CGH; CNVs; Epilepsy; Intellectual disability; Saudi population.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
A consanguineous family pedigree from Saudi Arabia with intellectual disability and epilepsy. The available samples for microarray and validation study are marked with asterisks
Fig. 2
Fig. 2
Array-CGH profiles analysis using Agilent CytoGenomic Analytics software (V.3.0.6.6) showing the deletion. Zero value indicates equal fluorescence intensity ratio between the sample and reference. Copy number losses shifted the ratio toward left (red), whereas copy number gains towards the right side (blue). CNV deletions observed in the chromosomal regions 8p23-p21 in four affected members of the family starts from 4,303,127 end 4,337,759 and the potential gene in this region is CSMD1 (OMIM: 612279)
Fig. 3
Fig. 3
Confirmation of deleted and gained CNVs region by using qPCR analysis. The results have shown CSMD1gene copy number deletions in the mother and three affected member of the family showed significant fold change as compared to the control
Fig. 4
Fig. 4
a Array-CGH profiles analysis using Agilent CytoGenomic Analytics software (V.3.0.6.6). Zero value indicates equal fluorescence intensity ratio between the sample and reference. Copy number losses shifted the ratio toward left (red) whereas copy number gains towards the right side (blue). CNVs gain at chromosome 1 starts from 150,819,879–150,819,938 cytoband 1q21.3 in the four affected members of the family and the potential gene in this region is LCE3C. b Our results showed the gain at chromosome 16 that starts from 70,647,078–70,669,681 cytoband 16q22.2 in our all four affected members of the family and the potential gene in this region is HPR gene. c Our results showed gain at chromosome 22 starts 22,686,690–22,735,300 cytoband 22q11.23 and the potential gene cluster in this region are GSTT1, GSTTP2, GSTT2B, GSTT2, DDT, and DDTL in all affected members of the family
Fig. 5
Fig. 5
a, b, c Confirmation of CNVs by qPCR have shown a significant fold increase in a LCE3C, b HPR, and c GSTT2 gene copy number in the patients of the family member as compared to the healthy individuals

References

    1. Hauser WA, Annegers JF, Rocca WA. Descriptive epidemiology of epilepsy: contributions of population-based studies from Rochester, Minnesota. Mayo Clin Proc. 1996;71(6):576–86. doi: 10.4065/71.6.576. - DOI - PubMed
    1. Epilepsy Foundation of America . Epilepsy syndromes. 2011.
    1. Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet. 2006;7:85–97. doi: 10.1038/nrg1767. - DOI - PubMed
    1. Sharp AJ, Cheng Z, Eichler EE. Structural variation of the human genome. Annu Rev Genomics Hum Genet. 2006;7:407–42. doi: 10.1146/annurev.genom.7.080505.115618. - DOI - PubMed
    1. Cooper GM, Nickerson DA, Eichler EE. Mutational and selective effects on copy-number variants in the human genome. Nat Genet. 2007;39(7 Suppl):S22–9. doi: 10.1038/ng2054. - DOI - PubMed

Publication types