Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Aug 15;172(3):273-81.
doi: 10.1016/0922-4106(89)90057-6.

Inhibition of nucleoside transport by a new series of compounds related to lidoflazine and mioflazine

Affiliations

Inhibition of nucleoside transport by a new series of compounds related to lidoflazine and mioflazine

A P Ijzerman et al. Eur J Pharmacol. .

Abstract

A new series of compounds related to the nucleoside transport inhibitors, lidoflazine and mioflazine, is introduced. The influence of these derivatives on nucleoside-specific transport proteins was studied in two ways. First, a rapid, non-radioactive assay was developed for the screening of this type of material for actual transport inhibition in human erythrocytes. The method is based on the dose-dependent reversal of the inhibition of inorganic phosphate release induced by inosine when human erythrocytes are suspended in a phosphate-free medium. It enables the estimation of the potency and specificity of this new series of nucleoside transport inhibitors, most of which are highly active (EC50 values as low as 13 nM). Second, the displacement of a radiolabeled transport inhibitor, [3H]nitrobenzylthioinosine, was examined. All compounds were capable of displacing specific [3H]nitrobenzylthioinosine binding to crude and solubilized plasma membranes of calf lung tissue, displaying affinities in the nanomolar range. Pseudo-Hill coefficients derived from the shape of the displacement curves were significantly greater than unity for most derivatives, in contrast to values of approximately unity obtained for dipyridamole and analogs. These findings were incorporated in a mathematical model describing the interaction of mioflazine analogs with the transport protein, suggesting that one molecule of mioflazine is capable of displacing two or more molecules of [3H]nitrobenzylthioinosine at a time. The consequences of this model regarding the nature of the transport protein are discussed.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources