Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jan 1;70(Pt 1):21-31.
doi: 10.1016/j.msec.2016.08.060. Epub 2016 Aug 24.

Multifunctional magnetic nanostructured hardystonite scaffold for hyperthermia, drug delivery and tissue engineering applications

Affiliations

Multifunctional magnetic nanostructured hardystonite scaffold for hyperthermia, drug delivery and tissue engineering applications

Ali Farzin et al. Mater Sci Eng C Mater Biol Appl. .

Abstract

Hyperthermia and local drug delivery have been proposed as potential therapeutic approaches for killing cancer cells. The development of bioactive materials such as Hardystonite (HT) with magnetic and drug delivery properties can potentially meet this target. This new class of magnetic bioceramic can replace the widely used magnetic iron oxide nanoparticles, whose long-term biocompatibility is not clear. Magnetic HT can be potentially employed to develop new ceramic scaffolds for bone surgery and anticancer therapies. With this in mind, a synthesis procedure was developed to prepare multifunctional bioactive scaffold for tissue engineering, hyperthermia and drug delivery applications. To this end, iron (Fe3+)-containing HT scaffolds were prepared. The effect of Fe on biological, magnetic and drug delivery properties of HT scaffolds were investigated. The results showed that obtained Fe-HT is bioactive and magnetic with no magnetite or maghemite as secondary phases. The Fe-HT scaffolds obtained also possessed high specific surface areas and demonstrated sustained drug delivery. These results potentially open new aspects for biomaterials aimed at regeneration of large-bone defects caused by malignant bone tumors through a combination of hyperthermia, local drug delivery and osteoconductivity.

Keywords: Drug delivery; Hyperthermia; Magnetic ceramic scaffolds.

PubMed Disclaimer

MeSH terms

LinkOut - more resources