Dynamic disorder can explain non-exponential kinetics of fast protein mechanical unfolding
- PMID: 27771331
- DOI: 10.1016/j.jsb.2016.10.003
Dynamic disorder can explain non-exponential kinetics of fast protein mechanical unfolding
Abstract
Protein unfolding often does not obey a simple two-state behavior. Previous single molecule force spectroscopy studies demonstrated stretched exponential kinetics of protein unfolding under a constant pulling force, the molecular origin of which remains subject to debate. We here set out to extensively sample the mechanical unfolding of ubiquitin and NuG2 by Molecular Dynamics (MD) simulations. Both proteins show kinetics best fit by stretched exponentials, with stretching exponents similar to those found in experiments, even though static disorder is absent in our short MD simulations. Instead, we can ascribe non-exponential kinetics to dynamic disorder, due to conformational fluctuations on the nanosecond timescale. Our study highlights the general role of dynamic disorder in protein kinetics on a broad range of time scales even including those probed in MD simulations.
Keywords: Atomic force microscopy; Molecular Dynamics simulations; Non-exponential kinetics; NuG2; Ubiquitin.
Copyright © 2016 Elsevier Inc. All rights reserved.
Similar articles
-
The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques.Proc Natl Acad Sci U S A. 2004 May 11;101(19):7299-304. doi: 10.1073/pnas.0400033101. Epub 2004 Apr 27. Proc Natl Acad Sci U S A. 2004. PMID: 15123816 Free PMC article.
-
Stretching of single poly-ubiquitin molecules revisited: dynamic disorder in the non-exponential unfolding kinetics.J Chem Phys. 2014 Mar 28;140(12):125102. doi: 10.1063/1.4869206. J Chem Phys. 2014. PMID: 24697481
-
Non-exponential kinetics of unfolding under a constant force.J Chem Phys. 2016 Nov 14;145(18):185102. doi: 10.1063/1.4966922. J Chem Phys. 2016. PMID: 27846674
-
Single molecule force spectroscopy using polyproteins.Chem Soc Rev. 2012 Jul 21;41(14):4781-96. doi: 10.1039/c2cs35033e. Epub 2012 May 30. Chem Soc Rev. 2012. PMID: 22648310 Review.
-
Experimental and computational characterization of biological liquid crystals: a review of single-molecule bioassays.Int J Mol Sci. 2009 Sep 10;10(9):4009-4032. doi: 10.3390/ijms10094009. Int J Mol Sci. 2009. PMID: 19865530 Free PMC article. Review.
Cited by
-
Protein nanomechanics in biological context.Biophys Rev. 2021 Aug 7;13(4):435-454. doi: 10.1007/s12551-021-00822-9. eCollection 2021 Aug. Biophys Rev. 2021. PMID: 34466164 Free PMC article. Review.
-
Accessibility explains preferred thiol-disulfide isomerization in a protein domain.Sci Rep. 2017 Aug 29;7(1):9858. doi: 10.1038/s41598-017-07501-4. Sci Rep. 2017. PMID: 28851879 Free PMC article.
-
Single-molecule Taq DNA polymerase dynamics.Sci Adv. 2022 Mar 11;8(10):eabl3522. doi: 10.1126/sciadv.abl3522. Epub 2022 Mar 11. Sci Adv. 2022. PMID: 35275726 Free PMC article.
-
Nonexponential kinetics captured in sequential unfolding of polyproteins over a range of loads.Curr Res Struct Biol. 2022 Apr 28;4:106-117. doi: 10.1016/j.crstbi.2022.04.003. eCollection 2022. Curr Res Struct Biol. 2022. PMID: 35540955 Free PMC article.
-
Biological physics by high-speed atomic force microscopy.Philos Trans A Math Phys Eng Sci. 2020 Dec 11;378(2186):20190604. doi: 10.1098/rsta.2019.0604. Epub 2020 Oct 26. Philos Trans A Math Phys Eng Sci. 2020. PMID: 33100165 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources