Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jan:203:108-114.
doi: 10.1016/j.cbpb.2016.10.003. Epub 2016 Oct 20.

Chicken albumin exhibits natural resistance to glycation

Affiliations

Chicken albumin exhibits natural resistance to glycation

Jessica Zuck et al. Comp Biochem Physiol B Biochem Mol Biol. 2017 Jan.

Abstract

Glycation of proteins and subsequent production of advanced glycation end products (AGEs) is a major contributor to the pathophysiology of diabetes. The objective of the present study was to compare the glycation of avian and human serum albumin to elucidate the mechanisms by which protein glycation in birds is prevented in the presence of naturally high plasma glucose concentrations. Solutions of purified chicken and human serum albumin (CSA and HSA) were prepared with four different glucose concentrations (0, 5.56, 11.1, and 22.2mM) and incubated at three temperatures (37.0, 39.8, and 41.4°C) for seven days. The solutions were sampled on Days 0, 3, and 7 and analyzed by liquid chromatography-electrospray ionization-mass spectrometry for the presence of glycated albumin. Four-way repeated measures ANOVA (p=0.032) indicate that all independent variables (albumin type, glucose concentration, temperature and time) interacted to affect the degree of glycation. With increasing glucose concentration, the glycation of both HSA and CSA increased with time at all temperatures. In addition, HSA was glycated to a greater extent than CSA at the two higher glucose concentrations for all temperature conditions. Glycation was elevated with increasing temperatures for HSA but not CSA. The results suggest an inherent difference between human and chicken albumin that contributes to the observed differences in glycation. Further research is needed to characterize this inherent difference in an effort to elucidate mechanisms by which avian plasma protein is glycated to a lesser degree than that of mammals (humans).

Keywords: Albumin; Avian; Glucose; Glycation; Human.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources