Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Apr 30:2:35-45.
doi: 10.2147/HP.S60703. eCollection 2014.

Direct phosphorylation events involved in HIF-α regulation: the role of GSK-3β

Affiliations
Review

Direct phosphorylation events involved in HIF-α regulation: the role of GSK-3β

Daniela Mennerich et al. Hypoxia (Auckl). .

Abstract

Hypoxia-inducible factors (HIFs), consisting of α- and β-subunits, are critical regulators of the transcriptional response to hypoxia under both physiological and pathological conditions. To a large extent, the protein stability and the recruitment of coactivators to the C-terminal transactivation domain of the HIF α-subunits determine overall HIF activity. The regulation of HIF α-subunit protein stability and coactivator recruitment is mainly achieved by oxygen-dependent posttranslational hydroxylation of conserved proline and asparagine residues, respectively. Under hypoxia, the hydroxylation events are inhibited and HIF α-subunits stabilize, translocate to the nucleus, dimerize with the β-subunits, and trigger a transcriptional response. However, under normal oxygen conditions, HIF α-subunits can be activated by various growth and coagulation factors, hormones, cytokines, or stress factors implicating the involvement of different kinase pathways in their regulation, thereby making HIF-α-regulating kinases attractive therapeutic targets. From the kinases known to regulate HIF α-subunits, only a few phosphorylate HIF-α directly. Here, we review the direct phosphorylation of HIF-α with an emphasis on the role of glycogen synthase kinase-3β and the consequences for HIF-1α function.

Keywords: GSK-3β; HIF-1; hypoxia; kinase; phosphorylation; tumor suppressor; ubiquitinylation.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Phosphorylation- and hydroxylation-mediated proteasomal degradation of hypoxia-inducible factor 1α (HIF-1α). Notes: HIF-1α is phosphorylated on specific residues (T498, S502, S505, T506, and S510 or S551, T555, and S589) by glycogen synthase kinase 3β, leading to interaction with Fbw7 that serves as the recognition component of an E3 ubiquitin ligase complex also containing Skp1, Cul1, and Rbx1 and results in degradation of HIF-1α via the ubiquitin proteasome pathway. This degradation pathway is blocked by the ubiquitin-specific protease 28 (USP28). In contrast, HIF-1α is hydroxylated on specific residues (P402 and P564) by a family of prolyl hydroxylases (PHDs), leading to interaction with the VHL ubiquitin ligase complex, containing VHL, elongin C, elongin B, Cul2, and Rbx1, and results also in the proteasomal degradation of HIF-1α. In this case, the HIF-1α degradation could be blocked by the ubiquitin-specific protease 20 (USP20). Abbreviations: bHLH, basic helix-loop-helix; PAS A, Per-ARNT-Sim A domain; PAS B, Per-ARNT-Sim B domain; ODD, oxygen-dependent degradation domain; N-TAD, N-terminal transactivation domain; ID, inhibitory domain; C-TAD, C-terminal transactivation domain; Fbw7, F-box and WD-40 protein 7; VHL, von Hippel-Lindau protein; Cul1, Cullin 1; Cul2, Cullin 2; Skp1, S phase kinase associated protein 1; Rbx1, Ring box 1; E2, E2 ubiquitin-conjugating enzyme; Ub – ubiquitin.

Similar articles

Cited by

References

    1. Prabhakar NR. Sensing hypoxia: physiology, genetics and epigenetics. J Physiol. 2013;1;591(Pt 9):2245–2257. - PMC - PubMed
    1. Semenza GL. Involvement of oxygen-sensing pathways in physiologic and pathologic erythropoiesis. Blood. 2009;114(10):2015–2019. - PubMed
    1. Wenger RH, Stiehl DP, Camenisch G. Integration of oxygen signaling at the consensus HRE. Sci STKE. 2005;2005(306):re12. - PubMed
    1. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399–408. - PMC - PubMed
    1. Semenza GL. Life with oxygen. Science. 2007;318(5847):62–64. - PubMed

LinkOut - more resources