Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Sep 25;264(27):15930-5.

Differences in environment of FAD between NAD-dependent and O2-dependent types of rat liver xanthine dehydrogenase shown by active site probe study

Affiliations
  • PMID: 2777772
Free article

Differences in environment of FAD between NAD-dependent and O2-dependent types of rat liver xanthine dehydrogenase shown by active site probe study

T Saito et al. J Biol Chem. .
Free article

Abstract

Rat liver deflavoxanthine dehydrogenase has been prepared by incubating native enzyme with calcium chloride. On reconstitution with FAD, about 85% of the original activity is recovered, all which is the O2-dependent type. In contrast, when dithiothreitol-treated deflavoenzyme is incubated with FAD, the recovery of activity is almost the same as above, but most of the recovered activity is of the NAD-dependent type. Deflavoenzyme with or without previous treatment with dithiothreitol was also reconstituted with two artificial FAD analogues, 8-mercapto-FAD and 6-OH-FAD. The difference spectra between the reconstituted enzymes and the initial deflavoenzyme indicate that, in each case, the FAD analogue is bound in its neutral form in dithiothreitol-treated enzyme, whereas it is bound in the anionic form in enzyme without previous dithiothreitol treatment. Furthermore, the protonated forms can be converted into the anionic forms on storage with a concomitant change of activity from the NAD-dependent to the O2-dependent type. This clearly indicates different environments around FAD in the two types of enzyme protein, which are shown to be interconvertible through oxidation-reduction of enzyme cysteinyl residues.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources