γ-Protocadherin structural diversity and functional implications
- PMID: 27782885
- PMCID: PMC5106212
- DOI: 10.7554/eLife.20930
γ-Protocadherin structural diversity and functional implications
Abstract
Stochastic cell-surface expression of α-, β-, and γ-clustered protocadherins (Pcdhs) provides vertebrate neurons with single-cell identities that underlie neuronal self-recognition. Here we report crystal structures of ectodomain fragments comprising cell-cell recognition regions of mouse γ-Pcdhs γA1, γA8, γB2, and γB7 revealing trans-homodimers, and of C-terminal ectodomain fragments from γ-Pcdhs γA4 and γB2, which depict cis-interacting regions in monomeric form. Together these structures span the entire γ-Pcdh ectodomain. The trans-dimer structures reveal determinants of γ-Pcdh isoform-specific homophilic recognition. We identified and structurally mapped cis-dimerization mutations to the C-terminal ectodomain structures. Biophysical studies showed that Pcdh ectodomains from γB-subfamily isoforms formed cis dimers, whereas γA isoforms did not, but both γA and γB isoforms could interact in cis with α-Pcdhs. Together, these data show how interaction specificity is distributed over all domains of the γ-Pcdh trans interface, and suggest that subfamily- or isoform-specific cis-interactions may play a role in the Pcdh-mediated neuronal self-recognition code.
Keywords: biophysics; clustered protocadherins; crystal structure; mouse; neuronal self-avoidance; neuroscience; protein diversity; protein-protein recognition; structural biology.
Conflict of interest statement
The authors declare that no competing interests exist.
Figures



















Similar articles
-
Protocadherin cis-dimer architecture and recognition unit diversity.Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):E9829-E9837. doi: 10.1073/pnas.1713449114. Epub 2017 Oct 30. Proc Natl Acad Sci U S A. 2017. PMID: 29087338 Free PMC article.
-
Structural Basis of Diverse Homophilic Recognition by Clustered α- and β-Protocadherins.Neuron. 2016 May 18;90(4):709-23. doi: 10.1016/j.neuron.2016.04.004. Epub 2016 May 5. Neuron. 2016. PMID: 27161523 Free PMC article.
-
Visualization of clustered protocadherin neuronal self-recognition complexes.Nature. 2019 May;569(7755):280-283. doi: 10.1038/s41586-019-1089-3. Epub 2019 Apr 10. Nature. 2019. PMID: 30971825 Free PMC article.
-
Structural origins of clustered protocadherin-mediated neuronal barcoding.Semin Cell Dev Biol. 2017 Sep;69:140-150. doi: 10.1016/j.semcdb.2017.07.023. Epub 2017 Jul 22. Semin Cell Dev Biol. 2017. PMID: 28743640 Free PMC article. Review.
-
Clustered protocadherins and neuronal diversity.Prog Mol Biol Transl Sci. 2013;116:145-67. doi: 10.1016/B978-0-12-394311-8.00007-8. Prog Mol Biol Transl Sci. 2013. PMID: 23481194 Review.
Cited by
-
Protocadherins at the Crossroad of Signaling Pathways.Front Mol Neurosci. 2020 Jun 30;13:117. doi: 10.3389/fnmol.2020.00117. eCollection 2020. Front Mol Neurosci. 2020. PMID: 32694982 Free PMC article. Review.
-
A Mechanically Weak Extracellular Membrane-Adjacent Domain Induces Dimerization of Protocadherin-15.Biophys J. 2018 Dec 18;115(12):2368-2385. doi: 10.1016/j.bpj.2018.11.010. Epub 2018 Nov 16. Biophys J. 2018. PMID: 30527337 Free PMC article.
-
Visualization of trans homophilic interaction of clustered protocadherin in neurons.Proc Natl Acad Sci U S A. 2023 Sep 19;120(38):e2301003120. doi: 10.1073/pnas.2301003120. Epub 2023 Sep 11. Proc Natl Acad Sci U S A. 2023. PMID: 37695902 Free PMC article.
-
Applications of sequence coevolution in membrane protein biochemistry.Biochim Biophys Acta Biomembr. 2018 Apr;1860(4):895-908. doi: 10.1016/j.bbamem.2017.10.004. Epub 2017 Oct 7. Biochim Biophys Acta Biomembr. 2018. PMID: 28993150 Free PMC article. Review.
-
Computational investigation of missense somatic mutations in cancer and potential links to pH-dependence and proteostasis.PLoS One. 2024 Nov 19;19(11):e0314022. doi: 10.1371/journal.pone.0314022. eCollection 2024. PLoS One. 2024. PMID: 39561123 Free PMC article.
References
-
- Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung L-W, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH. PHENIX : a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D Biological Crystallography. 2010;66:213–221. doi: 10.1107/S0907444909052925. - DOI - PMC - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases